Download Free Catalysis An Integrated Approach Book in PDF and EPUB Free Download. You can read online Catalysis An Integrated Approach and write the review.

Written by an excellent, highly experienced and motivated team of lecturers, this textbook is based on one of the most successful courses in catalysis and as such is tried-and-tested by generations of graduate and PhD students, i.e. the Catalysis-An-Integrated-Approach (CAIA) course organized by NIOK, the Dutch Catalysis research school. It covers all essential aspects of this important topic, including homogeneous, heterogeneous and biocatalysis, but also kinetics, catalyst characterization and preparation, reactor design and engineering. The perfect source of information for graduate and PhD students in chemistry and chemical engineering, as well as for scientists wanting to refresh their knowledge
This book concentrates on industrially relevant reactions which are catalyzed by heterogeneous and homogeneous catalysts. Homogeneous catalysis by metal complexes is treated jointly with heterogeneous catalysis using metallic and non-metallic solids. In both areas the high degree of sophistication of spectroscopic techniques and theoretical modelling has led to an enormous increase in our understanding at the molecular level. This holds for the kinetics of the reactions and the reactivities of the catalysts, as well as for the syntheses of the catalytic materials. The development of catalysis science since the first edition of this book has necessitated a thorough revision, including special chapters on biocatalysis, catalyst characterization and adsorption methods. The multidisciplinary nature of catalysis is reflected in the choice of a novel combination of basic disciplines which will be refreshing and inspiring to readers.
Providing an integrated approach to the various aspects of catalysis, this textbook is ideal for graduate students from catalysis, engineering, and organic synthesis.
This introductory textbook covers all aspects of catalysis. It also bridges computational methods, industrial applications and green chemistry, with over 600 references. The book is aimed at chemistry and chemical engineering students, and is suitable for both senior undergraduate- and graduate-level courses, with many examples and hands-on exercises. The author, a renowned researcher in catalysis, is well known for his clear teaching and writing style (he was voted "lecturer of the year" by the chemistry students). Following an introduction to green chemistry and the basics of catalysis, the book covers the principles and applications of homogeneous catalysis, heterogeneous catalysis and biocatalysis. Each chapter includes up-to-date industrial examples, that demonstrate how catalysis helps our society reach the goals of sustainable development. Since its publication in 2008, Catalysis: Concepts and Green Applications has become the most popular textbook in catalysis. This second edition is updated with the latest developments in catalysis research in academia and industry. It also contains 50 additional exercises, based on the suggestions of students and teachers of chemistry and chemical engineering from all over the world. The book is also available in the Chinese language (https://detail.tmall.com/item.htm?spm=a212k0.12153887.0.0.4e60687dUTEDKm&id=619581126247). Additional teaching material (original figures as PowerPoint lecture slides) is freely available in the Supplementary Material.
The idea for putting together a tutorial on zeolites came originally from my co-editor, Eric Derouane, about 5 years ago. I ?rst met Eric in the mid-1980s when he spent 2 years working for Mobil R&D at our then Corporate lab at Princeton, NJ. He was on the senior technical staff with projects in the synthesis and characterization of new materials. At that time, I managed a group at our Paulsboro lab that was responsible for catalyst characterization in support of our catalyst and process development efforts, and also had a substantial group working on new material synthesis. Hence, our interests overlapped considerably and we met regularly. After Eric moved back to Namur (initially), we maintained contact, and in the 1990s, we met a number of times in Europe on projects of joint interest. It was after I retired from ExxonMobil in 2002 that we began to discuss the tutorial concept seriously. Eric had (semi-)retired and lived on the Algarve, the southern coast of Portugal. In January 2003, my wife and I spent 3 weeks outside of Lagos, and I worked parts of most days with Eric on the proposed content of the book. We decided on a comprehensive approach that ultimately amounted to some 20+ chapters covering all of zeolite chemistry and catalysis and gave it the title Zeolite Chemistry and Catalysis: An integrated Approach and Tutorial.
Catalysis is a multidisciplinary activity which is reflected in this book. The editors have chosen a novel combination of basic disciplines - homogeneous catalysis by metal complexes is treated jointly with heterogeneous catalysis with metallic and non-metallic solids. The main theme of the book is the molecular approach to industrial catalysis.In the introductory section Chapter 1 presents a brief survey of the history of industrial heterogeneous and homogeneous catalysis. Subsequently, a selection of current industrial catalytic processes is described (Chapter 2). A broad spectrum of important catalytic applications is presented, including the basic chemistry, some engineering aspects, feedstock sources and product utilisation. In Chapter 3, kinetic principles are treated.The section on fundamental catalysis begins with a description of the bonding in complexes and to surfaces (Chapter 4). The elementary steps on complexes and surfaces are described. The chapter on heterogeneous catalysis (5) deals with the mechanistic aspects of three groups of important reactions: syn-gas conversion, hydrogenation, and oxidation. The main principles of metal and metal oxide catalysis are presented. Likewise, the chapter on homogeneous catalysis (6) concentrates on three reactions representing examples from three areas: carbonylation, polymerization, and asymmetric catalysis. Identification by in situ techniques has been included. Many constraints to the industrial use of a catalyst have a macroscopic origin. In applied catalysis it is shown how catalytic reaction engineering deals with such macroscopic considerations in heterogeneous as well as homogeneous catalysis (Chapter 7). The transport and kinetic phenomena in both model reactors and industrial reactors are outlined.The section on catalyst preparation (Chapters 8 and 9) is concerned with the preparation of catalyst supports, zeolites, and supported catalysts, with an emphasis on general principles and mechanistic aspects. For the supported catalysts the relation between the preparative method and the surface chemistry of the support is highlighted. The molecular approach is maintained throughout. The first chapter (10) in the section on catalyst characterization summarizes the most common spectroscopic techniques used for the characterisation of heterogeneous catalysts such as XPS, Auger, EXAFS, etc. Temperature programmed techniques, which have found widespread application in heterogeneous catalysis both in catalyst characterization and simulation of pretreatment procedures, are discussed in Chapter 11. A discussion of texture measurement, theory and application, concludes this section (12). The final chapter (13) gives an outline of current trends in catalysis. Two points of view are adopted: the first one focusses on developments in process engineering. Most often these have their origin in demands by society for better processes. The second point of view draws attention to the autonomous developments in catalysis, which is becoming one of the frontier sciences of physics and chemistry. In this book emphasis is on those reactions catalyzed by heterogeneous and homogeneous catalysts of industrial relevance. The integrative treatment of the subject matter involves many disciplines, consequently, the writing of the book has been a multi-author task. The editors have carefully planned and harmonized the contents of the chapters.
Now in it's 3rd Edition, Industrial Catalysis offers all relevant information on catalytic processes in industry, including many recent examples. Perfectly suited for self-study, it is the ideal companion for scientists who want to get into the field or refresh existing knowledge. The updated edition covers the full range of industrial aspects, from catalyst development and testing to process examples and catalyst recycling. The book is characterized by its practical relevance, expressed by a selection of over 40 examples of catalytic processes in industry. In addition, new chapters on catalytic processes with renewable materials and polymerization catalysis have been included. Existing chapters have been carefully revised and supported by new subchapters, for example, on metathesis reactions, refinery processes, petrochemistry and new reactor concepts. "I found the book accesible, readable and interesting - both as a refresher and as an introduction to new topics - and a convenient first reference on current industrial catalytic practise and processes." Excerpt from a book review for the second edition by P. C. H. Mitchell, Applied Organometallic Chemistry (2007)
This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Sumposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings.The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volum. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings.
Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. - Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere - Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events - Uses graphics and explicit examples to explain concepts - Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises
The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focused primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. In addition, the book includes general elements regarding the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment. Very few books are available on catalysis in production schemes using biomass or its primary conversion products, such as bio-oil and lignin. This book fills that gap with detailed discussions of: - Catalytic pyrolysis of lignocellulosic biomass - Hybrid biogasoline by co-processing in FCC units - Fischer-Tropsch synthesis to biofuels (biomass-to-liquid process) - Steam reforming of bio-oils to hydrogen With energy prices rapidly rising, environmental concerns growing, and regulatory apparatus evolving, this book is a resource with tutorial, research, and technological value for chemists, chemical engineers, policymakers, and students. - Includes catalytic reaction mechanism schemes and gives a clear understanding of catalytic processes - Includes flow diagrams of bench-, pilot- and industrial-scale catalytic processing units and demonstrates the various process technologies involved, enabling easy selection of the best process - Incorporates many tables, enabling easy comparison of data based on a critical review of the available literature