Download Free Cases On Research Based Teaching Methods In Science Education Book in PDF and EPUB Free Download. You can read online Cases On Research Based Teaching Methods In Science Education and write the review.

While the great scientists of the past recognized a need for a multidisciplinary approach, today’s schools often treat math and science as subjects separate from the rest. This not only creates a disinterest among students, but also a potential learning gap once students reach college and then graduate into the workforce. Cases on Research-Based Teaching Methods in Science Education addresses the problems currently facing science education in the USA and the UK, and suggests a new hands-on approach to learning. This book is an essential reference source for policymakers, academicians, researchers, educators, curricula developers, and teachers as they strive to improve education at the elementary, secondary, and collegiate levels.
As professionals, teachers can become more effective and powerful by developing the skills to recognize scientifically based practice and, when the evidence is not available, use some basic research concepts to draw conclusions on their own. This paper offers a primer for those skills that will allow teachers to become independent evaluators of educational research.
Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.
"Reaching Students presents the best thinking to date on teaching and learning undergraduate science and engineering. Focusing on the disciplines of astronomy, biology, chemistry, engineering, geosciences, and physics, this book is an introduction to strategies to try in your classroom or institution. Concrete examples and case studies illustrate how experienced instructors and leaders have applied evidence-based approaches to address student needs, encouraged the use of effective techniques within a department or an institution, and addressed the challenges that arose along the way."--Provided by publisher.
Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for "evidence-based" policy and practice in educationâ€"now codified in the federal law that authorizes the bulk of elementary and secondary education programsâ€"have brought a new sense of urgency to understanding the ways in which the basic tenets of science manifest in the study of teaching, learning, and schooling. Scientific Research in Education describes the similarities and differences between scientific inquiry in education and scientific inquiry in other fields and disciplines and provides a number of examples to illustrate these ideas. Its main argument is that all scientific endeavors share a common set of principles, and that each fieldâ€"including education researchâ€"develops a specialization that accounts for the particulars of what is being studied. The book also provides suggestions for how the federal government can best support high-quality scientific research in education.
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Socio-scientific issues (SSI) are open-ended, multifaceted social issues with conceptual links to science. They are challenging to negotiate and resolve, and they create ideal contexts for bridging school science and the lived experience of students. This book presents the latest findings from the innovative practice and systematic investigation of science education in the context of socio-scientific issues. Socio-scientific Issues in the Classroom: Teaching, Learning and Research focuses on how SSI can be productively incorporated into science classrooms and what SSI-based education can accomplish regarding student learning, practices and interest. It covers numerous topics that address key themes for contemporary science education including scientific literacy, goals for science teaching and learning, situated learning as a theoretical perspective for science education, and science for citizenship. It presents a wide range of classroom-based research projects that offer new insights for SSI-based education. Authored by leading researchers from eight countries across four continents, this book is an important compendium of syntheses and insights for veteran researchers, teachers and curriculum designers eager to advance the SSI agenda.
"This book comprises a wide range of scholarly essays introducing readers to key topics and issues in science education. Science education has become a well established field in its own right, with a vast literature, and many active areas of scholarship. Science Education: An International Course Companion offers an entry point for students seeking a sound but introductory understanding of the key perspectives and areas of thinking in science education. Each account is self-contained and offers a scholarly and research-informed introduction to a particular topic, theme, or perspective, with both citations to key literature and recommendations for more advanced reading. Science Education: An International Course Companion allows readers (such as those preparing for school science teaching, or seeking more advanced specialist qualifications) to obtain a broad familiarity with key issues across the field as well as guiding wider reading about particular topics of interest. The book therefore acts as a reader to support learning across courses in science education internationally. The broad coverage of topics is such that that the book will support students following a diverse range of courses and qualifications. The comprehensive nature of the book will allow course leaders and departments to nominate the book as the key reader to support students – their core ‘course companion’ in science education."