Download Free Case Histories Involving Fatigue And Fracture Mechanics Book in PDF and EPUB Free Download. You can read online Case Histories Involving Fatigue And Fracture Mechanics and write the review.

Fracture and Fracture Mechanics: Case Studies contains the proceedings of the Second National Conference on Fracture, held at the University of the Witwatersrand in Johannesburg, South Africa on November 26-27, 1984. This book presents case studies in fracture and fracture mechanics and highlights the problems associated with fracture, failure analysis, and safe design in industries as diverse as mining, power generation, transport, petrochemical, and manufacturing. This book has 29 chapters divided into five sections and opens with a discussion on the role of professional complacency in bridge failures. The first section is devoted to failure investigation and covers topics ranging from failure analysis of a hydraulic retarder piston to the use of scanning electron microscopy in investigating tungsten carbide-cobalt fractured components. The second section deals with slow crack growth and considers an approach to assessing structural integrity and fatigue failures in vibrating equipment. Failures arising from repair welding and incomplete heat treatment are described. The remaining chapters explore fitness for purpose evaluation of fractures; the environmental effects of fractures; and case studies of failure prevention in industries such as petrochemical, power generation, and transportation. This monograph will be of interest to structural engineers, metallurgists, and materials scientists and technologists.
Annotation An introduction for practicing engineers or students at the beginning graduate or advanced undergraduate level, emphasizing the application of fracture mechanics to preventing fracture and fatigue failures in structures, rather than the theoretical aspects of the field. The topics include stress analysis for members with cracks, resistance forces, fatigue crack initiation, and fitness for service. Among the case studies are bridges, oil tankers, and steel casings. The earlier editions were in 1977 and 1987. Annotation copyrighted by Book News, Inc., Portland, OR.
Fracture mechanics is an essential tool for engineers in a number of different engineering disciplines. For example, an engineer in a metals- or plastics-dependent industry might use fracture mechanics to evaluate and characterize materials, while another in aerospace or construction might use fracture mechanics-based methods for product design and service life-time estimation. This balanced treatment, which covers both applied engineering and mathematical aspects of the topic, provides a much-needed multidisciplinary treatment of the field suitable for the many diverse applications of the subject. While texts on linear elastic fracture mechanics abound, no complete treatments of the complex topic of nonlinear fracture mechanics have been available in a textbook format - until now. Written by an author with extensive industry credentials as well as academic experience, Nonlinear Fracture Mechanics for Engineers examines nonlinear fracture mechanics and its applications in mechanics, materials testing, and life prediction of components. The book includes the first-ever complete examination of creep and creep-fatigue crack growth. Examples and problems reinforce the concepts presented. A complete chapter on applications and case studies involving nonlinear fracture mechanics completes this thorough evaluation of this dynamic field of study.
Materials: Engineering, Science, Processing and Design—winner of a 2014 Textbook Excellence Award (Texty) from The Text and Academic Authors Association—is the ultimate materials engineering text and resource for students developing skills and understanding of materials properties and selection for engineering applications. Written by world-class authors, it takes a unique design led-approach that is broader in scope than other texts, thereby meeting the curriculum needs of a wide variety of courses in the materials and design field, from introduction to materials science and engineering to engineering materials, materials selection and processing, and materials in design. This new edition retains its design-led focus and strong emphasis on visual communication while expanding its treatment of crystallography and phase diagrams and transformations to fully meet the needs of instructors teaching a first-year course in materials. The book is fully linked with the leading materials software package used in over 600 academic institutions worldwide as well as numerous government and commercial engineering departments. - Winner of a 2014 Texty Award from the Text and Academic Authors Association - Design-led approach motivates and engages students in the study of materials science and engineering through real-life case studies and illustrative applications - Highly visual full color graphics facilitate understanding of materials concepts and properties - Chapters on materials selection and design are integrated with chapters on materials fundamentals, enabling students to see how specific fundamentals can be important to the design process - Available solutions manual, lecture slides, online image bank and materials selection charts for use in class handouts or lecture presentations - Links with the Cambridge Engineering Selector (CES EduPack), the powerful materials selection software
comprehensive coverage of both the "how" and "why" of metal failures Metal Failures gives engineers the intellectual tools and practical understanding needed to analyze failures from a structural point of view. Its proven methods of examination and analysis enable investigators to: * Reach correct, fact-based conclusions on the causes of metal failures * Present and defend these conclusions before highly critical bodies * Suggest design improvements that may prevent future failures Analytical methods presented include stress analysis, fracture mechanics, fatigue analysis, corrosion science, and nondestructive testing. Numerous case studies illustrate the application of basic principles of metallurgy and failure analysis to a wide variety of real-world situations. Readers learn how to investigate and analyze failures that involve: * Alloys and coatings * Brittle and ductile fractures * Thermal and residual stresses * Creep and fatigue * Corrosion, hydrogen embrittlement, and stress-corrosion cracking This useful professional reference is also an excellent learning tool for senior-level students in mechanical, materials, and civil engineering.
This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material. Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials. The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthermore, the book reviews a large number of experimental results on these failure mechanisms. The book will benefit structural and materials engineers and researchers seeking a “birds-eye” view of possible failure mechanisms in structures along with the associated failure and structural mechanics.