Download Free Cardiovascular Fluid Mechanics Book in PDF and EPUB Free Download. You can read online Cardiovascular Fluid Mechanics and write the review.

This book provides a guiding thread between the distant fields of fluid mechanics and clinical cardiology. Well rooted in the science of fluid dynamics, it drives the reader across progressively more realistic scenarios up to the complexity of routine medical applications. Based on the author’s 25 years of collaborations with cardiologists, it helps engineers learn communicating with clinicians, yet maintaining the rigor of scientific disciplines. This book starts with a description of the fundamental elements of fluid dynamics in large blood vessels. This is achieved by introducing a rigorous physical background accompanied by examples applied to the circulation, and by presenting classic and recent results related to the application of fluid dynamics to the cardiovascular physiology. It then explores more advanced topics for a physics-based understanding of phenomena effectively encountered in clinical cardiology. It stands as an ideal learning resource for physicists and engineers working in cardiovascular fluid dynamics, industry engineers working on biomedical/cardiovascular technology, and students in bio-fluid dynamics. Written with a concise style, this textbook is accessible to a broad readership, including students, physical scientists and engineers, offering an entry point into this multi-disciplinary field. It includes key concepts exemplified by illustrations using cutting-edge imaging, references to modelling and measurement technologies, and includes unique original insights.
The book presents the state of the art in the interdisciplinary field of fluid mechanics applied to cardiovascular modelling. It is neither a monograph nor a collection of research papers, rather an extended review in the field. It is arranged in 4 scientific chapters each presenting thoroughly the approach of a leading research team; two additional chapters prepared by biomedical scientists present the topic by the applied perspective. A unique feature is a substantial (approx. one fourth of the book) medical introductory part, written by clinical researchers for scientific readers, that would require a large effort to be collected otherwise.
Cardiovascular Fluid Dynamics, Volume 1 explores some problems and concepts of mammalian cardiovascular function, with emphasis on experimental studies and methods. It considers pressure measurement in experimental physiology, including the measurements of pulsatile flow, flow velocity, lengths, and dimensions; the use of control theory and systems analysis in cardiovascular dynamics; the application of computer models in cardiovascular research; the meaning and measurement of myocardial contractility; and the consequences of the steady-state analysis of arterial function. Organized into 10 chapters, this volume begins with an overview of the mammalian cardiovascular system and the essential features of cardiovascular function. It then discusses the practical problems associated with the use of pressure transducers in physiological and cardiac laboratories, the challenges involved in pulsatile flow measurement using flowmeters and thermal devices, and the mechanical analysis of the circulatory system. It explains some computer modeling techniques used in investigating the hemodynamics of the cardiovascular system, including the heart and heart muscle; basic concepts of muscle mechanics and the mechanical properties of cardiac muscle; the fluid mechanics of heart valves; and the pressure and flow in large arteries. The book concludes with a chapter on vascular resistance and vascular input impedance. This book is intended for biologists, physical scientists, and others interested in cardiovascular physiology.
This text deals with intra and extra-corporeal cardiovascular fluid dynamics. Topics covered include: cardiac mechanical models; analysis of arterial haemodynamics using the principle of wave separation; microvascular networks; cardiac assist devices and others.
First Published in 1981, this book offers a full, comprehensive guide to the operation of cardiovascular fluid systems. Carefully compiled and filled with a vast repertoire of notes, diagrams, and references this book serves as a useful reference for cardiologists, haematologists, students of medicine, and other practitioners in their respective fields.
Biofliudics has gained in importance in recent years, forcing engineers to redefine mechanical engineering theories and apply them to biological functions. To date, no book has successfully done this. Biofliud Mechanics in Cardiovascular Systems is one of the first books to take an interdisciplinary approach to the subject. Written by a professor and researcher, this book will combine engineering principles with human biology to deliver a text specifically designed for biomedical engineering professionals and students.
This text presents a general introduction to soft tissue biomechanics. One of its primary goals is to introduce basic analytical, experimental and computational methods. In doing so, it enables readers to gain a relatively complete understanding of the biomechanics of the heart and vasculature.
First Published in 1981, this book offers a full, comprehensive guide to the operation of cardiovascular fluid systems. Carefully compiled and filled with a vast repertoire of notes, diagrams, and references this book serves as a useful reference for cardiologists, haematologists, students of medicine, and other practitioners in their respective fields.
With the Karlsruhe Heart Model (KaHMo) we aim to share our vision of integrated computational simulation across multiple disciplines of cardiovascular research, and emphasis yet again the importance of Modelling the Human Cardiac Fluid Mechanics within the framework of the international STICH study. The focus of this work is on integrated cardiovascular fluid mechanics, and the potential benefits to future cardiovascular research and the wider bio-medical community.