Download Free Cardiac Mechanobiology In Physiology And Disease Book in PDF and EPUB Free Download. You can read online Cardiac Mechanobiology In Physiology And Disease and write the review.

This book presents the latest findings in the field of cardiac mechanobiology in health and disease. Cardiac mechanobiology provides knowledge of all aspects of mechanobiology of the heart. Cardiomyogenesis is discussed as well as the mechanobiology of cardiac remodeling and regeneration. The molecular mechanisms of mechanoperception and mechanotransduction in cardiomyocytes are explained, as well as stretch induced differentiation of cardiomyocytes derived from induced pluripotent stem cells. This volume of the series Cardiac and Vascular Biology complements the volume Vascular Mechanobiology in Physiology and Disease (volume 8) published in this series. The book is aimed at clinicians as well as researchers in cardiovascular biology, bioengineering and biophysics, and also represents an educational resource for young researchers and students in these fields.
This volume of the series Cardiac and Vascular Biology presents the most relevant aspects of vascular mechanobiology along with many more facets of this fascinating, timely and clinically highly relevant field. Mechanotransduction, mechanosensing, fluid shear stress, hameodynamics and cell fate, are just a few topics to name. All important aspects of vascular mechanobiology in health and disease are reviewed by some of the top experts in the field. This volume, together with a second title on cardiac mechanobiology featured in this series, will be of high relevance to scientists and clinical researchers in the area of vascular biology, cardiology and biomedical engineering.
Mechanobiology in Health and Disease brings together contributions from leading biologists, clinicians, physicists and engineers in one convenient volume, providing a unified source of information for researchers in this highly multidisciplinary area. Opening chapters provide essential background information on cell mechanotransduction and essential mechanobiology methods and techniques. Other sections focus on the study of mechanobiology in healthy systems, including bone, tendons, muscles, blood vessels, the heart and the skin, as well as mechanobiology studies of pregnancy. Final chapters address the nascent area of mechanobiology in disease, from the study of bone conditions, skin diseases and heart diseases to cancer. A discussion of future perspectives for research completes each chapter in the volume. This is a timely resource for both early-career and established researchers working on mechanobiology. - Provides an essential digest of primary research from many fields and disciplines in one convenient volume - Covers both experimental approaches and descriptions of mechanobiology problems from mathematical and numerical perspectives - Addresses the hot topic of mechanobiology in disease, a particularly dynamic field of frontier science
Principles of Heart Valve Engineering is the first comprehensive resource for heart valve engineering that covers a wide range of topics, including biology, epidemiology, imaging and cardiovascular medicine. It focuses on valves, therapies, and how to develop safer and more durable artificial valves. The book is suitable for an interdisciplinary audience, with contributions from bioengineers and cardiologists that includes coverage of valvular and potential future developments. This book provides an opportunity for bioengineers to study all topics relating to heart valve engineering in a single book as written by subject matter experts. - Covers the depth and breadth of this interdisciplinary area of research - Encompasses a wide range of topics, from basic science, to the translational applications of heart valve engineering - Contains contributions from leading experts in the field that are heavily illustrated
This book provides a balanced presentation of the fundamental principles of cardiovascular biomechanics research, as well as its valuable clinical applications. Pursuing an integrated approach at the interface of the life sciences, physics and engineering, it also includes extensive images to explain the concepts discussed. With a focus on explaining the underlying principles, this book examines the physiology and mechanics of circulation, mechanobiology and the biomechanics of different components of the cardiovascular system, in-vivo techniques, in-vitro techniques, and the medical applications of this research. Written for undergraduate and postgraduate students and including sample problems at the end of each chapter, this interdisciplinary text provides an essential introduction to the topic. It is also an ideal reference text for researchers and clinical practitioners, and will benefit a wide range of students and researchers including engineers, physicists, biologists and clinicians who are interested in the area of cardiovascular biomechanics.
Heart Development and Disease, Volume 156 in the Current Topics in Developmental Biology series, highlights new advances in the field, with this new volume presenting interesting chapters including Macrophages during heart valve development, Computational models of cardiovascular biology, Mechanisms of early sarcomere assembly, Role of RNA binding proteins during heart development and disease, Early heart development and morphogenesis, PSC models for development and disease, ECM or SHF development, Role of metabolism during heart development, Cellular ploidy in cardiac biology, and Genetics of CHD in the human population. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Current Topics in Developmental Biology series - Updated release includes the latest information on Heart Development Disease
Biomechanical forces play a major role in organ development, shape and function. When exceeding the physiological range, however, they may become detrimental for organ structure and function. This is probably best exemplified by the cardiovascular system, with both the heart and blood vessels being continuously exposed to the biomechanical forces exerted by the flow of blood. In the heart, it is the build-up of pressure inside the ventricles that allows the ejection of blood into the pulmonary and systemic circulation. The luminal diameter of the small arteries in both parts of the circulation determines the resistance to flow. Hence it also determines the level of blood pressure in both the pulmonary and systemic circulation and thus the afterload for both ventricles of the heart. A narrowing of the small arteries (e.g. due to an increase in tone) therefore leads to an increase in blood pressure in the affected part of the circulation. This will decrease organ perfusion but increase the afterload for the corresponding ventricle of the heart. Consequently, the affected ventricle must build up more pressure to maintain cardiac output. However, if the rise in blood pressure (pulmonary or arterial hypertension) persists the increase in wall tension can no longer be compensated by active constriction, thereby forcing the ventricle to resort to other means to unload itself. Typically, this is achieved by structural alterations in its wall which becomes thicker (hypertrophy) and stiffer (remodelling of the extracellular matrix). Ultimately, this maladaptive response may lead to dysfunction and eventually failure of the ventricle, which would only be able to eject a significantly smaller amount of blood into circulation. The increase in wall tension has resulted in an increased stretching of the cardiomyocytes as well as non-cardiomyocytes, such as cardiac fibroblasts, which in turn alters both their phenotype and their environment. Research into the mechanobiology of the heart aims to unravel the molecular and cellular mechanisms underlying the physiological response of the heart to load to learn what goes wrong when the heart is faced with sustained pressure overload. This may pave the way to therapeutically interfering with this maladaptive response and thus preventing either the initial hypertrophy or its transition into heart failure. While the heart is mainly subjected to pressure hence stretch as a biomechanical force, the mechanobiology of vascular cells is somewhat more complex. Endothelial cells lining the luminal surface of each blood vessel are continuously subjected to the viscous drag of flowing blood (referred to as fluid shear stress). Fluid shear stress mainly affects the endothelial cells of the small arteries and arterioles, maintaining them in a dormant phenotype. If blood flow is disturbed (e.g. at arterial bifurcations or curvatures) fluid shear stress declines and may give rise to a shift in phenotype of the endothelial cells. A shift from anti-inflammatory to pro-inflammatory in combination with the reduced flow at these sites may enable leukocyte recruitment and diapedesis, which results in a pro-inflammatory response in the vessel wall. Endothelial cells and in particular vascular smooth muscle cells are subjected to another biomechanical force: the blood pressure. Volume-dependent distention of the vessel wall (which can be achieved through an increase in blood flow) results in an increase in wall tension, thereby stretching of the endothelial and smooth muscle cells. Like the cardiomyocytes of the heart, the vascular smooth muscle cells of the small arteries and arterioles try to normalise wall tension by active constriction, which cannot be maintained for long. These cells subsequently undergo hypertrophy or hyperplasia (depending on the size of the blood vessel) and remodel the extracellular matrix so that the vessel wall also becomes thicker and stiffer. This in turn raises their resistance to flow and may contribute to the increase in blood pressure in either the pulmonary or systemic circulation. Research into the mechanobiology of the blood vessels aims to unravel the molecular and cellular mechanisms underlying the physiological response of the vascular cells to pressure (wall tension) and flow (shear stress). It also aims to uncover what goes wrong (e.g. in arteriosclerosis or hypertension) and to eventually specifically interfere with these maladaptive remodelling processes. The aforementioned aspects of cardiovascular mechanobiology along with many more facets of this fascinating, timely and highly clinically relevant field of research are addressed by the original research and review articles within this Research Topic.
Fully updated from cover to cover, Zipes and Jalife's Cardiac Electrophysiology: From Cell to Bedside, 8th Edition, provides the comprehensive, multidisciplinary coverage you need—from new knowledge in basic science to the latest clinical advances in the field. Drs. José Jalife and William Gregory Stevenson lead a team of global experts who provide cutting-edge content and step-by-step instructions for all aspects of cardiac electrophysiology. - Packs each chapter with the latest information necessary for optimal basic research as well as patient care. - Covers new technologies such as CRISPR, protein research, improved cardiac imaging, optical mapping, and wearable devices. - Contains significant updates in the areas of molecular biology and genetics, iPSCs (induced pluripotent stem cells), embryonic stem cells, precision medicine, antiarrhythmic drug therapy, cardiac mapping with advanced techniques, and ablation technologies including stereotactic radioablation. - Includes 47 new chapters covering both basic science and clinical topics. - Discusses extensive recent progress in the understanding, diagnosis, and management of arrhythmias, including new clinical insights on atrial fibrillation and stroke prevention, new advances in the understanding of ventricular arrythmias in genetic disease, and advances in implantable devises and infection management. - Features 1,600 high-quality photographs, anatomic and radiographic images, electrocardiograms, tables, algorithms, and more., with additional figures, tables, and videos online. - Recipient of a 2018 Highly Commended award from the British Medical Association. - Enhanced eBook version included with purchase. Your enhanced eBook allows you to access all of the text, figures, and references from the book on a variety of devices.