Download Free Carbonic Anhydrases As Biocatalysts Book in PDF and EPUB Free Download. You can read online Carbonic Anhydrases As Biocatalysts and write the review.

Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, present throughout most living organisms and encoded by five evolutionarily unrelated gene families. The Carbonic Anhydrases as Biocatalysts: From Theory to Medical and Industrial Applications presents information on the growing interest in the study of this enzyme family and their applications to both medicine and biotechnology. - Offers comprehensive coverage of the carbonic anhydrases enzyme family and their properties as biocatalysts - Includes current applications of carbonic anhydrases in biotechnology on the basis of their catalytic efficiency, including new technologies for CO2 capture processes - Identifies new targets for drug design studies - Provides a selectivity profile for the different carbonic anhydrases and their related biomedical applications
This book provides an overview of the world market of therapeutic enzymes and enzyme inhibitors, rare diseases, orphan drugs, the costs of drug development and therapies, and enzymes in downstream processing of pharmaceuticals. It discusses carbonic anhydrase inhibitors and their multiple drug interactions, carboxylesterase inhibitors for pharmaceutical applications, employment of inhibitors for the treatment of neurodegenerative diseases, use of engineered proteins, bioactive peptides, and fibrinolytic enzymes for thrombolytic therapy, and enzymes important for the design and development of new drugs/drug metabolites such as aldehyde oxidases and cytochrome P450 enzymes and the role the latter play in vascular biology and pathophysiology. The treatment of cancer is explored in connection with enzymatic amino acid deprivation therapies and new drugs that act as chemical degraders of oncogenic proteins. The book also introduces the resistance mechanisms of cancer. Furthermore, it provides an insight into the relationship between pathological conditions of cardiovascular disease and oxidative stress. The text also focuses on the potential use of nanoparticles as carriers for enzymes with medical relevance, computer-aided drug design for the identification of multi-target directed ligands, and the development of improved therapeutics through a glycan-“designer” approach. It concludes with an introduction to the chemoenzymatic synthesis of drugs.
Implementing biocatalytic strategies in an industrial setting at a commercial scale is a challenging task, necessitating a balance between industrial need against economic viability. With invited contributions from small and large-scale chemical and pharmaceutical companies, this book bridges the gap between academia and industry. Contributors discuss current processes, types of biocatalysts and improvements, industrial motivation and key aspects to economically succeed. With its focus on industry related issues, this book will be a useful tool for future research by both practitioners and academics.
This book was written with the purpose of providing a sound basis for the design of enzymatic reactions based on kinetic principles, but also to give an updated vision of the potentials and limitations of biocatalysis, especially with respect to recent app- cations in processes of organic synthesis. The ?rst ?ve chapters are structured in the form of a textbook, going from the basic principles of enzyme structure and fu- tion to reactor design for homogeneous systems with soluble enzymes and hete- geneous systems with immobilized enzymes. The last chapter of the book is divided into six sections that represent illustrative case studies of biocatalytic processes of industrial relevance or potential, written by experts in the respective ?elds. We sincerely hope that this book will represent an element in the toolbox of gr- uate students in applied biology and chemical and biochemical engineering and also of undergraduate students with formal training in organic chemistry, biochemistry, thermodynamics and chemical reaction kinetics. Beyond that, the book pretends also to illustrate the potential of biocatalytic processes with case studies in the ?eld of organic synthesis, which we hope will be of interest for the academia and prof- sionals involved in R&D&I. If some of our young readers are encouraged to engage or persevere in their work in biocatalysis this will certainly be our more precious reward.
Biocatalysis has become an essential tool in the chemical industry and is the core of industrial biotechnology, also known as white biotechnology, making use of biocatalysts in terms of enzymes or whole cells in chemical processes as an alternative to chemical catalysts. This shift can be seen in the many areas of daily life where biocatalysts-with
This reference book originates from the interdisciplinary research cooperation between academia and industry. In three distinct parts, latest results from basic research on stable enzymes are explained and brought into context with possible industrial applications. Downstream processing technology as well as biocatalytic and biotechnological production processes from global players display the enormous potential of biocatalysts. Application of "extreme" reaction conditions (i.e. unconventional, such as high temperature, pressure, and pH value) - biocatalysts are normally used within a well defined process window - leads to novel synthetic effects. Both novel enzyme systems and the synthetic routes in which they can be applied are made accessible to the reader. In addition, the complementary innovative process technology under unconventional conditions is highlighted by latest examples from biotech industry.
The study of carbonic anhydrase has spanned multiple generations of scientists. Carbonic anhydrase was first discovered in 1932 by Meldrum and Roughton. Inhibition by sulfanilamide was shown in 1940 by Mann and Keilin. Even Hans Krebs contributed to early studies with a paper in 1948 showing the relationship of 25 different sulfonamides to CA inhibition. It was he who pointed out the importance of both the charged and uncharged character of these compounds for physiological experiments. The field of study that focuses on carbonic anhydrase (CA) has exploded in recent years with the identification of new families and isoforms. The CAs are metalloenzymes which are comprised of 5 structurally different families: the alpha, beta, gamma, and delta, and epsilon classes. The alpha class is found primarily in animals with several isoforms associated with human disease. The beta CAs are expressed primarily in plants and are the most divergent. The gamma CAs are the most ancient. These are structurally related to the beta CAs, but have a mechanism more similar to the alpha CAs. The delta CAs are found in marine algae and diflagellates. The epsilon class is found in prokaryotes in which it is part of the carboxysome shell perhaps supplying RuBisCO with CO2 for carbon fixation. With the excitement surrounding the discovery of disease-related CAs, scientists have redoubled their efforts to better understand structure-function relationships, to design high affinity, isotype-specific inhibitors, and to delineate signaling systems that play regulatory roles over expression and activity. We have designed the book to cover basic information of mechanism, structure, and function of the CA families. The authors included in this book bring to light the newest data with regard to the role of CA in physiology and pathology, across phylums, and in unique environmental niches.
Carbonic Anhydrases provides an interdisciplinary review of the burgeoning carbonic anhydrase (CA) research area, spanning from CAs classification (biochemical and structural features) to drug design and pharmacology of CA inhibitors and activators, finally touching on the biotechnological applications of these metalloenzymes. The book adopts a clear step-by-step approach and introduction to this intricate and highly interdisciplinary field. A diverse range of chapters from international experts speak to CA classification and distribution, the mechanisms of action and drug design of inhibitors and activators, the druggability of the various isoforms in the treatment of a multitude of diseases, and threats to human health. Carbonic Anhydrases provides biology, biochemistry, and medicinal chemistry students and researchers a thorough discussion and update on the evergreen and expanding research area of CAs. - Offers a full overview of CAs' biochemical and structural features, as well as drug design and pharmacology of inhibitors and activators - Provides a thorough update on the newly identified isoforms, modulating chemotypes, and innovative biomedical applications - Describes the current biotechnological applications of CAs, including processes for CO2 capture - Features chapter contributions from international leaders in CA biology, medicinal chemistry, and pharmacology
This book is a printed edition of the Special Issue "Immobilized Biocatalysts" that was published in Catalysts
Carbonic anhydrase (CA) is a seemingly ubiquitous enzyme of profound physiological importance, which plays essential roles in respiration, acid-base homeostasis, bone resorption, calcification, photosynthesis, several biosynthetic pathways and a variety of processes involving ion, gas and fluid transfer. This enzyme, which is present in at least three gene families (a, ß, ?), has found favour as a model for the study of evolution of gene families and for site-directed mutagenesis in structure/function relationships, for protein folding and for transgenic and gene target studies. Since the early use of CA inhibitors as diuretics and in treating congestive heart failure, the enzyme has been target of considerable clinical attention. Much of this is now focused on endeavours to produce a new generation of such drugs for the effective treatment of glaucoma and other potential applications. Recent data, suggesting links between CA and various disease processes, including cancer, have stimulated further...