Download Free Carbon Sequestration In Tropical Grassland Ecosystems Book in PDF and EPUB Free Download. You can read online Carbon Sequestration In Tropical Grassland Ecosystems and write the review.

"The increasing scientific consensus on global warming, together with the precautionary principle and the fear of non-linear climate transitions is leading to increasing action to mitigate global warming. To help mitigate global warming, carbon storage by forests is often mentioned as the only or the best way to reduce the CO2 concentration in the atmosphere. This book presents evidence that tropical grasslands, which cover 50% of the earth’s surface, are as important as forests for the sequestration of carbon. Results are reported of a large five year on-farm research project carried out in Latin America (Colombia, Costa Rica). Soil and vegetation carbon stocks of long-established pasture, fodder bank and silvopastoral systems on commercial farms were compared with those of adjacent forest and degraded land. The objective was to identify production systems that both increase livestock productivity and farm income and, at the same time, contribute to a reduction of carbon accumulation in the atmosphere. The project was carried out in four ecosystems: the Andean hillsides of the semi-evergreen forest in Colombia; the Colombian humid Amazonian tropical forest ecosystem; the sub-humid tropical forest ecosystem on the Pacific Coast of Costa Rica; and the humid tropical forest ecosystem on the Atlantic Coast of Costa Rica. The book is recommended reading for research and teaching scientists and policy makers with an interest to mitigating global warming."
The pedosphere - the thin mantel of soil on the earth's surface - plays a potentially crucial role in climate and climate change . The carbon storage of soils is the second largest in the biosphere, making the dynamics of soil organic carbon an important issue that must be understood if we are to fully comprehend global change. This new book examines the importance of soils and their relationship to global change, specifically to the greenhouse effect. Soils and Global Change presents a state-of-the-art compendium of our present knowledge of soils. This up-to-date information source enables readers to delve into the literature about soils and climate change and examine soils in both natural and managed environments.
Soil organic carbon (SOC), a key component of the global carbon (C) pool, plays an important role in C cycling, regulating climate, water supplies and biodiversity, and therefore in providing the ecosystem services that are essential to human well-being. Most agricultural soils in temperate regions have now lost as much as 60% of their SOC, and as much as 75% in tropical regions, due to conversion from natural ecosystems to agricultural uses and mainly due to continuous soil degradation. Sequestering C can help to offset C emissions from fossil fuel combustion and other C-emitting activities, while also enhancing soil quality and long-term agronomic productivity. However, developing effective policies for creating terrestrial C sinks is a serious challenge in tropical and subtropical soils, due to the high average annual temperatures in these regions. It can be accomplished by implementing improved land management practices that add substantial amounts of biomass to soil, cause minimal soil disturbance, conserve soil and water, improve soil structure, and enhance soil fauna activity. Continuous no-till crop production is arguably the best example. These soils need technically sound and economically feasible strategies to sustainably enhance their SOC pools. Hence, this book provides comprehensive information on SOC and its management in different land-use systems, with a focus on preserving soils and their ecosystem services. The only book of its kind, it offers a valuable asset for students, researchers, policymakers and other stakeholders involved in the sustainable development and management of natural resources at the global level.
A comprehensive assessment of the effects of climate change on global grasslands and the mitigating role that ecologists can play.
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.
This book contains 28 chapters with emphasis on the interactive nature of the relationships between the soil, plant, animal and environmental components of grassland systems, both natural and managed. It analyses the present knowledge and the future trends of research for combining the classical view of grasslands, as a resource for secure feeding of an increasing human population, with the more recent perspective of the contribution of grasslands to the mitigation of environmental impacts and biodiversity erosion as consequences of human society activities. The chapters are organized within five sections dealing with the different functions and the main ecosystem services expected from grasslands: (i) domestic herbivore feeding and animal production; (ii) the regulation of biogeochemical cycles and its consequences for the environment; (iii) dynamics of biodiversity hosted by grasslands; (iv) integration of grasslands within sustainable animal production systems; and (v) interactions of grassland areas with other land use systems at the landscape level.
This book reviews current topics on plant metabolism of air pollutants and elevated CO2, responses of whole plants and plant ecosystems, genetics and molecular biology for functioning improvement, experimental ecosystems and climate change research, global carbon-cycle monitoring in plant ecosystems, and other important issues. The authors, conducting research in Europe, the United States, Australia, and East Asia, present a wealth of information on their work in the field.
A comprehensive book on basic processes of soil C dynamics and the underlying factors and causes which determine the technical and economic potential of soil C sequestration. The book provides information on the dynamics of both inorganic (lithogenic and pedogenic carbonates) and organic C (labile, intermediate and passive). It describes different types of agroecosystems, and lists questions at the end of each chapter to stimulate thinking and promote academic dialogue. Each chapter has a bibliography containing up-to-date references on the current research, and provides the state-of-the-knowledge while also identifying the knowledge gaps for future research. The critical need for restoring C stocks in world soils is discussed in terms of provisioning of essential ecosystem services (food security, carbon sequestration, water quality and renewability, and biodiversity). It is of interest to students, scientists, and policy makers.
Few topics cut across the soil science discipline wider than research on soil carbon. This book contains 48 chapters that focus on novel and exciting aspects of soil carbon research from all over the world. It includes review papers by global leaders in soil carbon research, and the book ends with a list and discussion of global soil carbon research priorities. Chapters are loosely grouped in four sections: § Soil carbon in space and time § Soil carbon properties and processes § Soil use and carbon management § Soil carbon and the environment A wide variety of topics is included: soil carbon modelling, measurement, monitoring, microbial dynamics, soil carbon management and 12 chapters focus on national or regional soil carbon stock assessments. The book provides up-to-date information for researchers interested in soil carbon in relation to climate change and to researchers that are interested in soil carbon for the maintenance of soil quality and fertility. Papers in this book were presented at the IUSS Global Soil C Conference that was held at the University of Wisconsin-Madison, USA.
This book profiles 13 contributions by some of the world's most active scientists on the subject of measuring soil carbon in grassland systems and sustainable grassland management practices. While many different aspects of carbon sequestration in grasslands are covered, many gaps in our knowledge are also revealed, and it is hoped that this book will promote discussion, prompt further research, contribute to develop global and national grassland strategies and contribute to sustainable production intensification.