Download Free Carbon Nitride Nanostructures For Sustainable Energy Production And Environmental Remediation Book in PDF and EPUB Free Download. You can read online Carbon Nitride Nanostructures For Sustainable Energy Production And Environmental Remediation and write the review.

This book covers recent advances in the rational design and characterization of gCN nanostructures for energy and environmental remediation.
In recent years, carbon nitride, a new type of two-dimensional (2D) material, has attracted great interest, in terms of fundamental scientific investigation and potential practical applications, for a range of energy and environmental technologies. This can be largely attributed to its optoelectronic and physicochemical properties, including moderate band gap, adjustable energy band configuration, tailor-made surface functionalities, low cost, metal-free nature, remarkable thermochemical stability, and environmentally benign manufacturing protocol. Nanostructured Carbon Nitrides for Sustainable Energy and Environmental Applications offers a comprehensive, authoritative, and critical account of the recent progress in the development and application of multifunctional carbon nitride materials and their hybrid heterostructures. There are two major objectives of this book: first, to provide a systematic overview of the key design principles toward the fabrication of high-performance carbon nitride–based nanostructures; and second, to provide insights into a range of clean energy technologies and environmental remediation methods that build on these nanoengineered carbon nitrides. This book serves as an important reference source for materials scientists and engineers who are interested in developing their understanding of how carbon-based nanomaterials are being used for sustainable energy and environmental applications. Helps users gain deeper insights into various aspects of carbon nitride materials from multidisciplinary perspectives Covers how to apply nanostructured carbon nitrides to tackle global energy and environmental challenges in a sustainable manner Explains the design and fabrication of carbon nitride-based materials with optimized structures, controlled morphologies, and tailored properties for practical implementation
Beneficial properties of graphitic carbon nitride (gCN) have been discovered in recent years during the promotion of its visible‐light‐driven photocatalytic activity for water splitting. Applications of gCN have flourished in such fields as renewable energy production and environmental remediation, while gCNs have been explored to serve as electrocatalysts, electronic and photoelectronic devices, non-volatile memory devices, anodes in lithium‐ion batteries, and platinum supports in polymer electrolyte fuel cells. This book covers recent advances in the rational design and characterization of gCN nanostructures for energy and environmental remediation, and discusses achievements in fabrication approaches of gCN nanostructures using various chemical and physical approaches. It highlights recent advances in the theoretical and experimental development of novel multidimensional nanoarchitectonics of gCNs along with insight into catalytic energy production, energy storage, and environmental remediation. Practical applications and utilization of gCN based devices are also discussed. With contributions from leading global researchers, this title will appeal to graduate students and researchers in nanoscience, chemistry, chemical engineering and materials science who are interested in developing new gCN materials or devices.
This book covers the most cutting-edge developments in the field of magnetic nanoparticles and nanomagnetism, such as novel synthetic and fabrication technologies, diverse magnetic characterization techniques and highly proved and most innovative applications of magnetic nanoparticles. In addition, the book addresses characterization techniques including structural, morphological and magnetic. It is an invaluable reference for experts in the field to consolidate knowledge, provide insight and inspiration to beginners wishing to learn about magnetic nanoparticles. Written at an accessible level suitable for all researchers in materials science, including physicists, biologists, and engineers.
This book discusses how nanostructured materials play a key role in helping address environmental challenges. Employing nanostructured materials in catalysis can increase the efficient decomposition of toxic pollutants in air, water, and soil. This multidisciplinary book discusses the most promising nanostructured materials made-up of metals, metal oxides, metal chalcogenides, multi-metal oxides, carbon nanostructures, and hybrid materials that can address environmental remediation. It provides a well-referenced introduction to newcomers from allied disciplines and will be valuable to researchers in academia, industry, and government working on solutions to environmental problems.
Nanotechnology is a promising technique that can facilitate sustainability across a wide range of areas. By fabricating materials into nanometre-scale, nanotechnology has facilitated an efficient, economically, and environmentally acceptable solution for waste treatment and energy production. This book illustrates how green nanotechnology is being used to promote sustainability, including applications in environmental remediation and energy optimization. First, a comprehensive discussion of the latest advances to address the global challenges in water purification, CO2 management, plastics issue, food waste valorisation, toxic chemical pollutes, and energy efficiency will be provided. This is followed by the new opportunities that have been created in the production of alternative renewable energy under the premise of low natural resource consumption and minuscule toxicity production. Offering an important reference for the research community to understand more about green nanotechnology and its applications in sustainable development and circular economy. The book will be of interest to graduate students and researchers in nanotechnology, materials science, sustainability, environmental science, and energy.
The book focuses on how sustainable nanomaterials can help with various aspects of infectious diseases, including prevention, diagnosis, and treatment, as well as the characteristics that materials should possess in order to enter clinical trials.
A multidisciplinary approach to the latest developments of nanomedicine for the treatment of different facets of diabetes.