Download Free Carbon Nanotube Based Optical Sensors For Pharmaceutical Applications Book in PDF and EPUB Free Download. You can read online Carbon Nanotube Based Optical Sensors For Pharmaceutical Applications and write the review.

Semiconducting single-walled carbon nanotubes (SWCNTs) are attractive transducers for biosensor applications due to their unique photostability, single molecule sensitivity, and ease of multiplexing. Sensors can be rendered selective via several detection modalities including the use of natural recognition elements (e.g., proteins) as well as the formation of synthetic molecular recognition sites from adsorbed heteropolymers. However, to date, deployment of SWCNT-based biosensors has been limited. The aim of this thesis was to study the design and development of SWCNT-based optical sensors for analytes relevant to the food and pharmaceutical industries including neurotransmitters, proteins, and metal ions. The research described in this thesis spans several levels of nanosensor development including: i) the fundamental study of SWCNT-polymer interactions and their dependence on solution properties; ii) sensor development using existing detection modalities and the use of mathematical modeling to guide sensor design and interpret data; and iii) the invention of a new sensor form factor enabling long-term sensor stability and point-of-use measurements. Our fundamental work on SWCNT-polymer interactions investigates the influence of polymer structure, SWCNT structure, and solution properties on molecular recognition, using single-stranded DNA as a model polymer system. We find that specific ssDNA sequences are able to form distinct corona phases across SWCNT chiralities, resulting in varying response characteristics to a panel of biomolecule probe analytes. In addition, we find that ssDNA-SWCNT fluorescence and wrapping structure is significantly influenced by the solution ionic strength, pH, and dissolved oxygen in a sequence-dependent manner. We are able to model this phenomenon and demonstrate the implications of solution conditions on molecular recognition, modulating the recognition of riboflavin. These results provide insight into the unique molecular interactions between DNA and the SWCNT surface, and have implications for molecular sensing, assembly, and nanoparticle separations. In addition to our experimental work, we used mathematical modeling to guide sensor design for biopharmaceutical characterization. A mathematical formulation for glycoprotein characterization was developed as well as a dynamic kinetic model to describe the data output by a label-free array of non-selective glycan sensors. We use the formulated model to guide microarray design by answering questions regarding the number and type of sensors needed to quantitatively characterize a glycoprotein mixture. As a second example, we report the design of a novel, diffusion-based assay for the characterization of protein aggregation. Specifically, we design hydrogel-encapsulated SWCNT sensors with a tunable hydrogel layer to influence the diffusion of immunoglobulin G protein species of variable size, and we develop a combined model that describes both the diffusion of analyte and analyte-sensor binding. By measuring the sensor response to a series of well-characterized protein standards that have undergone varying levels of UV stress, we demonstrate the ability to detect protein aggregates at a concentration as low as one percent on a molar basis. Finally, we report the development of a new form factor for optical nanosensor deployment involving the immobilization of SWCNT sensors onto paper substrates. We find that SWCNT optical sensors can be immobilized onto many different paper materials without influencing sensor performance. Moreover, we pattern hydrophobic barriers onto the paper substrates to create 1-dimensional sensor arrays, or barcodes, that are used for rapid, multiplexed characterization of several metal ions including Pb(II), Cd(II) and Hg(II). In addition to providing a new form factor for conducting point-of-use sensor measurements, these findings have the potential to significantly enhance the functionality of SWCNT-based optical sensors by interfacing them with existing paper diagnostic technologies including the manipulation of fluid flow, chemical reaction, and separation.
Carbon Nanotube-Based Sensors: Fabrication, Characterization, and Implementation highlights the latest research and developments on carbon nanotubes (CNTs) and their applications in sensors and sensing systems. It offers an overview of CNTs, including their synthesis, functionalization, characterization, and toxicology. It then delves into the fabrication and various applications of CNT-based sensors. FEATURES Defines the significance of different forms of CNT-based sensors synthesized for diverse engineering applications and compares the feasibility of their generation Helps readers evaluate different types of fabrication techniques to generate CNTs and their subsequent sensing Discusses fabrication of low-cost, efficient CNTs-based sensors that can be used for diverse applications and sheds light on synthesis methods for a range of printing techniques Highlights challenges and advances in security-related issues using CNTs-based sensors This book is aimed at researchers in the fields of materials and electrical engineering who are interested in the development of sensor technology for industrial, biomedical, and related applications.
Carbon nanotubes are exceptionally photostable fluorophores that emit in the near infrared range. Their novel optical properties make them particularly appealing for applications in biosensing. This chapter focuses on the state-of-the-art development of optical biosensors based on single-walled carbon nanotubes (SWCNTs); also, it draws attention to the basic photophysics of SWCNTs, optical-sensing mechanisms, and surface functionalization principles. The concerted efforts from the research community in the past decade have enabled the realization of several SWCNT-based optical biosensors that provide real-time, non-invasive analyte detection. We review the performance of these biosensors with regard to their sensitivity, selectivity and response time, and highlight the prospects and challenges of constructing biosensors for more advanced sensing applications.
Carbon Nanomaterials-Based Sensors: Emerging Research Trends in Devices and Applications covers the most recent research and design trends for carbon nanomaterials-based sensors for a variety of applications, including clinical and environmental uses, and more. Carbon nanomaterials-based sensors can be used with high sensitivity, stability and accuracy compared to other techniques. Written by experts in their given fields from around the world, this book helps researchers solve the particular challenges they face when developing new types of sensors. It instructs how to make sensitive, selective, robust, fast-response and stable carbon nanomaterial-based sensors, as well as how to utilize them in real life. Covers the environmental monitoring and analytical implications of electro-analytical methods, one of the most dynamically developing branches of carbon nanomaterials Includes a complete discussion of functionalized nanostructure materials reformulated with noble materials and advanced characteristics for improved applications when compared to standard materials Covers sustainability and challenges in the commercialization of carbon nanomaterials-based sensors
Recent advancements and research in nanotechnology, biotechnology, materials engineering the applications of nanomaterial are evolving. Carbon nanotubes (CNT) and CNT-based systems possess unique chemical, physical, and biological properties that make them good candidates in biomedical applications, but they also have some inherent properties that cause great concern about their biosafety. This volume explores the practical applications of carbon nanotubes in biomedical science and human health. It discusses the synthesis, properties, modification, and recent progress of carbon nanotubes and their applications for biosensing, cancer treatment, antibacterial therapy, tissue engineering, targeted drug delivery, and toxicity. It relays the potential and promise of carbon-based nanomaterials for host of applications while also looking at the challenges in synthesis, characterization, and applications of nanomaterials and how to overcome them.
This book provides an overview of the state of the art in optical and chemical nanosensors for industrial, environmental, diagnostic, security, and medical applications. It summarizes the various types and developments in optical and chemical sensor technology and then explains how the integration of optical/chemical sensors and nanomaterials creates new opportunities. The text also reviews optochemical sensors, starting from the basics in optoelectronics and concluding with the principles of operation at the basis of optochemical devices. The authors offer insight into future trends in this growing field and present a range of applications in the fields of medicine, security, and bioterrorism.
The optical properties of carbon nanotubes and graphene make them potentially suitable for a variety of photonic applications. Carbon nanotubes and graphene for photonic applications explores the properties of these exciting materials and their use across a variety of applications. Part one introduces the fundamental optical properties of carbon nanotubes and graphene before exploring how carbon nanotubes and graphene are synthesised. A further chapter focusses on nonlinearity enhancement and novel preparation approaches for carbon nanotube and graphene photonic devices. Chapters in part two discuss carbon nanotubes and graphene for laser applications and highlight optical gain and lasing in carbon nanotubes, carbon nanotube and graphene-based fiber lasers, carbon-nanotube-based bulk solid-state lasers, electromagnetic nonlinearities in graphene, and carbon nanotube-based nonlinear photonic devices. Finally, part three focusses on carbon-based optoelectronics and includes chapters on carbon nanotube solar cells, a carbon nanotube-based optical platform for biomolecular detection, hybrid carbon nanotube-liquid crystal nanophotonic devices, and quantum light sources based on individual carbon nanotubes. Carbon nanotubes and graphene for photonic applications is a technical resource for materials scientists, electrical engineers working in the photonics and optoelectronics industry and academics and researchers interested in the field.
Because of their estimated ultra-high third-order nonlinearity, single-walled carbon nanotubes (CNTs) can be regarded as a potential new material for optical nonlinearity. The nonlinearity of CNTs is believed to originate from the inter-band transitions of the π-electrons, causing nonlinear polarization. In this respect, CNTs are similar to other organic optical materials that exhibit extremely high nonlinearity. CNT-based photonics devices offer several key advantages, including ultrafast response, robustness, tunability of wavelength, and compatibility to fibers. This chapter will describe the design and fabrication of CNT-based nonlinear photonic devices. CNTs with suitable diameters – and thus suitable operational wavelengths – are deposited or grown directly on different types of fibers or waveguides to ensure effective CNT–light interaction. Optical nonlinear effects including four-wave mixing (FWM), cross-phase modulation (XPM), and self-phase modulation (SPM) have been observed experimentally using fabricated CNT-based devices. Corresponding wavelength conversion and optical signal regeneration applications based on various nonlinear effects are discussed.
Nanophotonics has emerged as a major technology and applications domain, exploiting the interaction of light-emitting and light-sensing nanostructured materials. These devices are lightweight, highly efficient, low on power consumption, and are cost effective to produce. The authors of this book have been involved in pioneering work in manufacturing photonic devices from carbon nanotube (CNT) nanowires and provide a series of practical guidelines for their design and manufacture, using processes such as nano-robotic manipulation and assembly methods. They also introduce the design and operational principles of opto-electrical sensing devices at the nano scale. Thermal annealing and packaging processes are also covered, as key elements in a scalable manufacturing process. Examples of applications of different nanowire based photonic devices are presented. These include applications in the fields of electronics (e.g. FET, CNT Schotty diode) and solar energy. Discusses opto-electronic nanomaterials, characterization and properties from an engineering perspective, enabling the commercialization of key emerging technologies Provides scalable techniques for nanowire structure growth, manipulation and assembly (i.e. synthesis) Explores key application areas such as sensing, electronics and solar energy