Download Free Carbon Functional Organosilicon Compounds Book in PDF and EPUB Free Download. You can read online Carbon Functional Organosilicon Compounds and write the review.

Efficient Methods for Preparing Silicon Compounds is a unique and valuable handbook for chemists and students involved in advanced studies of preparative chemistry in academia and industry. Organized by the various coordination numbers (from two to six) of the central silicon atom of the reported compounds, this book provides researchers with a handy and immediate reference for any compound or properties needed in the area. Edited by a renowned expert in the field, each chapter explores a different type of compound, thoroughly illustrated with useful schemes and supplemented by additional references. Knowledgeable contributors report on a broad range of compounds on which they have published and which are already used on a broad scale or have the potential to be used in the very near future to develop a new field of research or application in silicon chemistry. - Includes contributions and edits from leading experts in the field - Includes detailed chemical schemes and useful references for each preparative method - Organized by the coordination numbers of the central silicon atom for each compound for easy navigation - Serves as a go-to primer for researchers in novel compositions of silicon matter
Almost all branches of chemistry and material science now interface with organometallic chemistry - the study of compounds containing carbon-metal bonds. The widely acclaimed serial Advances in Organometallic Chemistry contains authoritative reviews that address all aspects of organometallic chemistry, a field which has expanded enormously since the publication of Volume 1 in 1964. - Provides an authoritative, definitive review addressing all aspects of organometallic chemistry - Useful to researchers within this active field and is a must for every modern library of chemistry - High quality research book within this rapidly developing field
A very large number of organo derivatives is formed by the Group IV ele ments silicon, germanium, tin, and lead. In comparing the general properties of these elements, Table 1. 1 shows that the first ionization energies decrease (though not in a regular way) with increase in size and atomic number, con sistent with the general increase in metallic character of the elements. Electro negativity values (which have been the subject of considerable controversy) show no clear trend. Although purely inorganic compounds of tin(n) and leaden) are well known, almost all organo Group IV derivatives show an oxidation state of IV. Bonds to carbon become weaker on passing from silicon to lead, as do the element-element bonds themselves. With any particular element M (M = Si, Ge, Sn, or Pb), there is a small decrease in bond energy in the order: M-Ph > M - Me > M - Et. Although accurate data for organo derivatives are lacking, strengths of bonds to other elements probably decrease in the order: M-F> M-O > M-CI > M-H ~ M-N ~ M-S ~ M-Br > M-I, while for a particular element X, the order is: Si-X > Ge-X > Sn-X > Pb-X. It is therefore understandable that reactions leading to Si-F, Si-O, or Si-CI bonds are especially favoured in a thermodynamic sense.
Organometallic chemistry is an interdisciplinary science which continues to grow at a rapid pace. Although there is continued interest in synthetic and structural studies the last decade has seen a growing interest in the potential of organometallic chemistry to provide answers to problems in catalysis synthetic organic chemistry and also in the development of new materials. This Specialist Periodical Report aims to reflect these current interests reviewing progress in theoretical organometallic chemistry, main group chemistry, the lanthanides and all aspects of transition metal chemistry. Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Includes title page, table of contents, list of contributors, preface and all indexes of each book.
A comprehensive, up-to-date reference to synthetic applications of organosilicon chemistry Organic, organometallic, and polymer chemistry as well as materials science all utilize silicon in various forms, yet there is little cross-fertilization of ideas and applications among the disciplines. This book presents a much-needed overview of silicon chemistry, allowing fundamental and applied scientists to take full advantage of progress made within and outside their primary fields of expertise. With an emphasis on the preparation and reactivity of silicon compounds in organic, organometallic, and polymer chemistry, the author examines a broad range of useful topics-from mechanisms to syntheses of and syntheses using different organofunctional silanes. Numerous schemes as well as up-to-date examples from academia and industry will help readers to solve current synthetic problems and explore ideas for future research. Clear, concise coverage includes: * The mechanistic basis for the development of new silicon-based reactions * Formation and cleavage of silane reagents and functional siliconheteroatom compounds * Silicones, silica, polysilanes, and other silicon-containing polymers * Properties of molecules containing silicon, including bioactivity * Methods for the preparation of Si-C compounds * Silicon in organic synthesis * An extensive functional group index for easy access to functional group transformations
The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist’s viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.