Download Free Carbon Dioxide Storage In Coal Seams With Enhanced Coalbed Methane Recovery Book in PDF and EPUB Free Download. You can read online Carbon Dioxide Storage In Coal Seams With Enhanced Coalbed Methane Recovery and write the review.

The mitigation of greenhouse gas emissions and enhanced recovery of coalbed methane are benefits to sequestering carbon dioxide in coal seams. This is possible because of the affinity of coal to preferentially adsorb carbon dioxide over methane. Coalbed methane is the most significant natural gas reserve in central Appalachia and currently is economically produced in many fields in the Basin. This thesis documents research that assesses the capacity of coal seams in the Central Appalachian Basin to store carbon dioxide and verifies the assessment through a field validation test. This research allowed for the first detailed assessment of the capacity for coal seams in the Central Appalachian Basin to store carbon dioxide and enhance coalbed methane recovery. This assessment indicates that more than 1.3 billion tons of carbon dioxide can be sequestered, while increasing coalbed methane reserves by as much as 2.5 trillion cubic feet. As many of the coalbed methane fields are approaching maturity, carbon sequestration and enhanced coalbed methane recovery has the potential to add significant recoverable reserves and extend the life of these fields. As part of this research, one thousand tons of carbon dioxide was successfully injected into a coalbed methane well in Russell County, Virginia as the first carbon dioxide injection test in the Appalachian coalfields. Research from the field validation test identified important injection parameters and vital monitoring technologies that will be applicable to commercial-scale deployment. Results from the injection test and subsequently returning the well to production, confirm that fractured coal seams have the potential to sequester carbon dioxide and increase methane production. It was demonstrated through the use of perfluorocarbon tracers that there is a connection through the coal matrix between the injection well and surrounding producing gas wells. This connection is a cause for concern because it is a path for the carbon dioxide to migrate to the producing wells. The thesis concludes by presenting options for mitigating carbon dioxide breakthrough in commercial-scale injection projects.
The recovery of coal bed methane can be enhanced by injecting carbon dioxide in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed carbon dioxide is permanently stored. This process is called Enhanced Coal Bed Methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of carbon dioxide in a carbon dioxide capture and storage (CCS) system. ECBM recovery is not yet a mature technology, in spite of the growing number of pilot and eld tests worldwide that have shown its potential and highlighted its diffculties. The problems encountered are largely due to the heterogeneous nature of coal and its complex interaction with gases. The aim of this thesis was to develop experimental and modeling tools that are able to provide a comprehensive characterization of coal required first to understand the mechanisms acting during the process of injection and storage and secondly to assess its potential for an ECBM operation.
Carbon dioxide emissions are considered a major source of increased atmospheric CO2 levels leading towards global warming. CO2 sequestration in coal bed reservoirs is one technique that can reduce the concentration of CO2 in the air. In addition, due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States. This basin was studied to investigate the potential of CO2 sequestration and ECBM. Primary recovery of methane is controversial ranging between 20-60% based on reservoir properties in coal bed reservoirs15. Using CO2 sequestration as a secondary recovery technique can enhance coal bed methane recovery up to 30%. Within the San Juan Basin, permeability ranges from 1 md to 100 md. The Fairway region is characterized with higher ranges of permeability and lower pressures. On the western outskirts of the basin, there is a transition zone characterized with lower ranges of permeability and higher pressures. Since the permeability is lower in the transition zone, it is uncertain whether this area is suitable for CO2 sequestration and if it can deliver enhanced coal bed methane recovery. The purpose of this research is to determine the economic feasibility of sequestering CO2 to enhance coal bed methane production in the transition zone of the San Juan Basin Fruitland coal seams. The goal of this research is two- fold. First, to determine whether there is a potential to enhance coal bed methane recovery by using CO2 injection in the transition zone of the San Juan Basin. The second goal is to identify the optimal design strategy and utilize a sensitivity analysis to determine whether CO2 sequestration/ECBM is economically feasible. Based on the results of my research, I found an optimal design strategy for four 160-acre spacing wells. With a high rate injection of CO2 for 10 years, the percentage of recovery can increase by 30% for methane production and it stores 10.5 BCF of CO2. The economic value of this project is $17.56 M and $19.07 M if carbon credits were granted at a price of $5.00/ton. If CO2 was not injected, the project would only give $15.55 M.
Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.
Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are from point sources such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity to offset the rather high cost of sequestration. Texas has large coal resources. Although they have been studied there is not enough information available on these coals to reliably predict coalbed methane production and CO2 sequestration potential. The goal of the work was to determine if sequestration of CO2 in low rank coals is an economically feasible option for CO2 emissions reduction. Additionally, reasonable CO2 injection and methane production rates were to be estimated, and the importance of different reservoir parameters investigated. A data set was compiled for use in simulating the injection of CO2 for enhanced coalbed methane production from Texas coals. Simulation showed that Texas coals could potentially produce commercial volumes of methane if production is enhanced by CO2 injection. The efficiency of the CO2 in sweeping the methane from the reservoir is very high, resulting in high recovery factors and CO2 storage. The simulation work also showed that certain reservoir parameters, such as Langmuir volumes for CO2 and methane, coal seam permeability, and Langmuir pressure, need to be determined more accurately. An economic model of Texas coalbed methane operations was built. Production and injection activities were consistent with simulation results. The economic model showed that CO2 sequestration for enhanced coalbed methane recovery is not commercially feasible at this time because of the extremely high cost of separating, capturing, and compressing the CO2. However, should government mandated carbon sequestration credits or a CO2 emissions tax on the order of 10[dollars]/ton become a reality, CO2 sequestration projects could become economic at gas prices of 4[dollars]/Mscf.
Carbon capture and storage (CCS) is among the advanced energy technologies suggested to make the conventional fossil fuel sources environmentally sustainable. It is of particular importance to coal-based economies. This book deals at length with the various aspects of carbon dioxide capture, its utilization and takes a closer look at the earth processes in carbon dioxide storage. It discusses potential of Carbon Capture, Storage, and Utilization as innovative energy technology towards a sustainable energy future. Various techniques of carbon dioxide recovery from power plants by physical, chemical, and biological means as well as challenges and prospects in biomimetic carbon sequestration are described. Carbon fixation potential in coal mines and in saline aquifers is also discussed. Please note: This volume is Co-published with The Energy and Resources Institute Press, New Delhi. Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka
The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U.S. Department of Energy's (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post-injection periods, the observed daily CBM production rates increased by more than 17% over pre-injection period production rates. An extensive multi-pronged monitoring program conducted by researchers from West Virginia University (WVU), the DOE National Energy Technology Laboratory (NETL), and CONSOL confirmed the absence of any reliable evidence of vertical migration of the injected CO2. The breakthrough event was the only evidence of horizontal migration, and there was no evidence of migration outside of the area of review (AOR). Current environmental regulatory conditions in the U.S. do not provide a need for CO2 sequestration, and the currently depressed natural gas market further detracts from any economic success that could be realized from CBM production enhancements at this time; however this report does offer details on alternative scenarios that could provide for limited economic viability of this concept.