Download Free Carbon Capture And Storage In Developing Countries Book in PDF and EPUB Free Download. You can read online Carbon Capture And Storage In Developing Countries and write the review.

Carbon Capture and Storage, Second Edition, provides a thorough, non-specialist introduction to technologies aimed at reducing greenhouse gas emissions from burning fossil fuels during power generation and other energy-intensive industrial processes, such as steelmaking. Extensively revised and updated, this second edition provides detailed coverage of key carbon dioxide capture methods along with an examination of the most promising techniques for carbon storage. The book opens with an introductory section that provides background regarding the need to reduce greenhouse gas emissions, an overview of carbon capture and storage (CCS) technologies, and a primer in the fundamentals of power generation. The next chapters focus on key carbon capture technologies, including absorption, adsorption, and membrane-based systems, addressing their applications in both the power and non-power sectors. New for the second edition, a dedicated section on geological storage of carbon dioxide follows, with chapters addressing the relevant features, events, and processes (FEP) associated with this scenario. Non-geological storage methods such as ocean storage and storage in terrestrial ecosystems are the subject of the final group of chapters. A chapter on carbon dioxide transportation is also included. This extensively revised and expanded second edition will be a valuable resource for power plant engineers, chemical engineers, geological engineers, environmental engineers, and industrial engineers seeking a concise, yet authoritative one-volume overview of this field. Researchers, consultants, and policy makers entering this discipline also will benefit from this reference. Provides all-inclusive and authoritative coverage of the major technologies under consideration for carbon capture and storage Presents information in an approachable format, for those with a scientific or engineering background, as well as non-specialists Includes a new Part III dedicated to geological storage of carbon dioxide, covering this topic in much more depth (9 chapters compared to 1 in the first edition) Features revisions and updates to all chapters Includes new sections or expanded content on: chemical looping/calcium looping; life-cycle GHG assessment of CCS technologies; non-power industries (e.g. including pulp/paper alongside ones already covered); carbon negative technologies (e.g. BECCS); gas-fired power plants; biomass and waste co-firing; and hydrate-based capture
Carbon Capture and Storage (CCS) technology could provide a technological bridge for achieving near to midterm GHG emission reduction goals. Integrated CCS technology is still under development and has noteworthy challenges, which would be possible to overcome through the implementation of large-scale demonstration projects. In order to assist developing countries to better understand issues related to potential technology deployment, there is a need to start analyzing various numerous challenges facing CCS within the economic and legal context of developing countries and countries in transition. This report is the first effort of the World Bank Group to contribute to a deeper understanding of (a) the integration of power generation with CCS technologies, as well as their costs; (b) regulatory barriers to the deployment of CCS; and (c) global financing requirements for CCS and applicable project finance structures involving instruments of multilateral development institutions. This report does not provide prescriptive solutions to overcome these barriers, since action must be taken on a country-by-country basis, taking account of different circumstances and national policies. Individual governments should decide their priorities on climate change mitigation and adopt appropriate measures accordingly. The analyses presented in this report may take on added relevance, depending on the future direction of international climate negotiations and domestic legal and policy measures in both developed and developing countries, and how they serve to encourage carbon sequestration. We expect that this report will provide insights for policy makers, stakeholders, private financiers, and donors in meeting the challenges of the deployment of climate change mitigation technologies and CCS in particular.
Carbon Capture and Storage in International Energy Policy and Law identifies the main contemporary regulatory requirements, challenges and opportunities involving CCS from a comparative and interdisciplinary perspective. It draws on the scholarship of renowned researchers across the fields of international energy law and policy to address CCS regulation and its impact on climate change, sustainable development, and related consequences for energy transition. In this vein, the book aims to address issues related to energy, energy justice and climate changes (including CCS technology). Contributors discuss the main challenges and advantages concerning international energy and the forms CCS may contribute to energy security, climate change, adaptation and mitigation of GHG emissions and sustainable development. In this light, the book discusses CCS as a bridge that integrates international energy, climate change and sustainable development. Covers contemporary regulatory command-and-control and market incentive instruments across the local, regional and/or international spheres in-depth and in comparison Reviews deregulatory impacts, modern financing of CCS, liability of the involved parties, and pertinent environmental issues Addresses sociotechnical aspects of CCS and its specific impact on the international arena Discusses the interplay of carbon capture and storage, renewables and the overall energy transition, current pathways to sustainable development
This report was produced under the Technical Assistance Grant: Determining the Potential for Carbon Capture and Storage (CCS) in Southeast Asia (TA 7575-REG), and is focused on an assessment of the CCS potential in Thailand, Viet Nam, and specific regions of Indonesia (South Sumatra) and the Philippines (Calabarzon). It contains inventories of carbon dioxide emission sources, estimates of overall storage potential, likely source-sink match options for potential CCS projects, and an analysis of existing policy, legal, and regulatory frameworks with a view toward supporting future CCS operations. The report also presents a comparative financial analysis of candidate CCS projects, highlights possible incentive schemes for financing CCS, and provides an actionable road map for pilot, demonstration, and commercial CCS projects.
Under the United Nations Framework Convention on Climate Change, developed countries can meet greenhouse gas emissions reduction commitments by funding carbon capture and storage (CCS) projects in developing countries. Data from published sources were used to identify the five most promising developing countries and to assess the theoretical capability for CCS in those countries in terms of compatible emissions and geologic storage capacity with the potential contribution to global emissions reduction targets. Combined with an assessment of the regulatory amenability for CCS, the five countries were ranked in terms of overall feasibility for CCS. The results showed that CCS is most feasible in China, South Africa, India, Mexico, and Indonesia, in that order. Developed countries can use this research to assist in making investment decisions about CCS in developing countries to help meet greenhouse gas emission reduction commitments.
Bioenergy with Carbon Capture and Storage: Using Natural Resources for Sustainable Development presents the technologies associated with bioenergy and CCS and its applicability as an emissions reduction tool. The book explores existing climate policies and current carbon capture and storage technologies. Sections offer an overview of several routes to use biomass and produce bioenergy through processes with low or even negative CO2 emissions. Associated technology and the results of recent research studies to improve the sustainability of the processes are described, pointing out future trends and needs. This book can be used by bioenergy engineering researchers in industry and academia and by professionals and researchers in carbon capture and storage.
The People's Republic of China (PRC) is taking concerted efforts and making large investments to peak out its carbon dioxide emissions around 2030. While current efforts are prioritizing accelerated energy efficiency and rapid expansion of renewables and nuclear in the energy mix, the fossil fuel related carbon dioxide emissions are still expected to rise even under a "new normal" growth strategies in the PRC. This brings in renewed emphasis on carbon capture and storage (CCS), which is currently the only near-commercial technologies to make deep cuts (up to 90%) in carbon dioxide emissions from fossil fuel related power plants and industries. This report draws on relevant technical assistance from Asian Development Bank (ADB), consultants' reports, and the work of ADB staff to assess the potential, the barriers and the challenges in demonstrating and deploying CCS in the PRC. It identifies unique low cost opportunities, recommends a gradual two phase approach to CCS deployment in the PRC and, provides complementary suite of policy actions to enable it.
The safe and secure deployment of Carbon Capture and Storage in developing countries could be a way to reconcile their economic development with the objective of climate change mitigation. The Clean Development Mechanism could provide the required additional financial incentive to enable the implementation of CCS projects. However, the inclusion of this technology in the CDM faces non-negligible regulatory challenges that cannot always be answered on the basis of the existing methodologies. The Conference of the Parties serving as the meeting of the Parties has announced the necessity of further guidance. In this context, this article identifies and offers elements of answer to the key issues at stake.
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.