Download Free Carbon Based Nanomaterials For Energy Conversion And Storage Book in PDF and EPUB Free Download. You can read online Carbon Based Nanomaterials For Energy Conversion And Storage and write the review.

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion presents a comprehensive overview of recent theoretical and experimental developments and prospects on carbon-based nanomaterials for thermal, solar and electrochemical energy conversion, along with their storage applications for both laboratory and industrial perspectives. Large growth in human populations has led to seminal growth in global energy consumption, hence fossil fuel usage has increased, as have unwanted greenhouse gases, including carbon dioxide, which results in critical environmental concerns. This book discusses this growing problem, aligning carbon nanomaterials as a solution because of their structural diversity and electronic, thermal and mechanical properties. - Provides an overview on state-of-the-art carbon nanomaterials and key requirements for applications of carbon materials towards efficient energy storage and conversion - Presents an updated and comprehensive review of recent work and the theoretical aspects on electrochemistry - Includes discussions on the industrial production of carbon-based materials for energy applications, along with insights from industrial experts
Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.
With the proliferation of electronic devices, the world will need to double its energy supply by 2050. This book addresses this challenge and discusses synthesis and characterization of carbon nanomaterials for energy conversion and storage. Addresses one of the leading challenges facing society today as we steer away from dwindling supplies of fossil fuels and a rising need for electric power due to the proliferation of electronic products Promotes the use of carbon nanomaterials for energy applications Systematic coverage: synthesis, characterization, and a wide array of carbon nanomaterials are described Detailed descriptions of solar cells, electrodes, thermoelectrics, supercapacitors, and lithium-ion-based storage Discusses special architecture required for energy storage including hydrogen, methane, etc.
The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.
This book systematically summarizes the advanced development of carbon-based nanomaterials for electrochemical catalysis, and it is comprised of four sections. The first section discusses about the fundamental synthesis, characterization techniques, and catalytic effects on the energy conversion and storage mechanism. The second section elaborately reviews various types of electrocatalytic reactions on carbon-based materials and their performance. The third section focuses on batteries about carbon-based materials with different storage mechanism. And the last one, the following enlightenment in terms of theoretical development and experimental research is provided to the general readers: 1) Precise design and construction of local atomic and electronic structures at the interface of catalysts; 2) Selective activation and directed conversion of carbon-based energy-carrying molecules at the interface; 3) Interaction mechanism and regulation of catalyst solid surface interface properties under environment and external field. This book will be useful for researchers and students who are interested in carbon-based nanomaterials, electrochemical catalysts and energy storage.
Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. - Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices - Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications - Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field
Advanced Nanomaterials for Electrochemical Energy Conversion and Storage covers recent progress made in the rational design and engineering of functional nanomaterials for battery and supercapacitor applications in the forms of electrode materials, separators and electrolytes. The book includes detailed discussions of preparation methods, structural characterization, and manipulation techniques. Users will find a comprehensive illustration on the close correlation between material structures and properties, such as energy density, power density, cycle number and safety. - Provides an overview on the application of nanomaterials for energy storage and power systems - Includes a description of the fundamental aspects of the electrochemical process - Explores the new aspects of electrolyte and separator systems
Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage addresses current challenges and covers design and fabrication approaches for nanomaterials based on metal organic frameworks for energy generation and storage technologies. The effect of synthetic diversity, functionalization, ways of improving conductivity and electronic transportation, tuning-in porosity to accommodate various types of electrolyte, and the criteria to achieve the appropriate pore size, shape and surface group of different metal sites and ligands are explored. The effect of integration of other elements, such as second metals or hetero-atomic doping in the system, to improve catalytic activity and durability, are also covered. This is an important reference source for materials scientists, engineers and energy scientists looking to further their understanding on how metal organic framework-based nanomaterials are being used to create more efficient energy conversion and storage systems. - Describes major metal organic framework-based nanomaterials applications for fuel cell, battery, supercapacitor and photovoltaic applications - Provides information on the various nanomaterial types used for creating the most efficient energy conversion and storage systems - Assesses the major challenges of using nanotechnology to manufacture energy conversion and storage systems on an industrial scale
Presenting the most relevant advances for employing carbon-based nanostructured materials for analytical purposes, this book serves as a reference manual that guides readers through the possibilities and helps when selecting the most appropriate material for targeted analytical applications. It critically discusses the role these nanomaterials can play in sample preparation, separation procedures and detection limit improvements whilst also considering the future trends in this field. Useful to direct initiatives, this book fills a gap in the literature for graduate students and professional researchers discussing the advantages and limitations across analytical chemistry in industry and academia.
This book offers comprehensive coverage of carbon-based nanomaterials and electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, and hydrogen generation and storage, as well as the latest material and new technology development. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, degradation mechanisms, challenges, and strategies. With in-depth discussions ranging from electrochemistry fundamentals to engineering components and applied devices, this all-inclusive reference offers a broad view of various carbon nanomaterials and technologies for electrochemical energy conversion and storage devices.