Download Free Capture Storage And Analysis Of Video Images On The Alcator C Mod Tokamak Book in PDF and EPUB Free Download. You can read online Capture Storage And Analysis Of Video Images On The Alcator C Mod Tokamak and write the review.

The proceedings of the Eleventh APS Topical Conference on Atomic Processes in Plasmas benchmarks the ongoing research developments in the interdisciplinary interaction between atomic and plasma physicists as they tackle large scale applied research problems in magnetic fusion, x-ray lasers, astrophysics, inertial fusion, and materials processing.
Phase Contrast Imaging (PCI) is a new diagnostic that was built for the Alcator C-Mod tokamak. It measures line-integrated (along 12 vertical chords) plasma density perturbations with good temporal (2-500 kHz) and wavenumber (0.5-12 /cm) resolution. The Quasi-Coherent (QC) fluctuation mode was studied using the PCI and other diagnostics. The mode was found to cause fluctuation of density, electric and magnetic field in the plasma edge with typical frequency of 100 kHz and typical poloidal wavenumber of about 5/cm. The mode was found to be responsible for confinement properties of the "Enhanced D-alpha H-mode" (a particularly favorable regime of tokamak operation). Through numerical modeling, the physical origin of the fluctuations was tentatively identified as "resistive X-point" mode (a kind of resistive ballooning mode strongly affected by the X-point configuration of magnetic field lines). The PCI system has been upgraded to detect waves in the ion cyclotron range of frequencies (ICRF, 40-80 MHz) by means of optical heterodyning - a technique based on modulation of the diagnostic laser beam near the wave frequency. The upgraded system was then used to study propagation of the Fast Magnetosonic Waves. These waves, which have never been measured in detail in past experiments, are being used to heat the tokamak plasma at the megawatt power level. The measured results were compared to the simple cold-plasma dispersion relation and to predictions of the full-wave 3D numerical modeling.
(Cont.) 3) Two-dimensional emissivity profiles of visible continuum (420-430nm) have been measured and found to be an order of magnitude too large when compared to expected levels from electron-ion bremsstrahlung and radiative recombination. Several atomic and molecular processes have been considered to explain the enhanced continuum. However, none of the considered processes could explain the continuum level without particle densities inconsistent with current modeling efforts. The visible imaging system was also used in identifying the causes of impurity injections during discharges, in identifying the failure of invessel components, and as a monitor of vessel and plasma conditions. Both the physics results and the operational benefits of the visible imaging system show that the system is a valuable quantitative and qualitative diagnostic.