Download Free Canopy Photosynthesis From Basics To Applications Book in PDF and EPUB Free Download. You can read online Canopy Photosynthesis From Basics To Applications and write the review.

The last 30 years has seen the development of increasingly sophisticated models that quantify canopy carbon exchange. These models are now essential parts of larger models for prediction and simulation of crop production, climate change, and regional and global carbon dynamics. There is thus an urgent need for increasing expertise in developing, use and understanding of these models. This in turn calls for an advanced, yet easily accessible textbook that summarizes the “canopy science” and introduces the present and the future scientists to the theoretical background of the current canopy models. This book presents current knowledge of functioning of plant canopies, models and strategies employed to simulate canopy function, and the significance of canopy architecture, physiology and dynamics in ecosystems, landscape and biosphere.
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.
This volume is a synthesis of current knowledge about the growth, development and functioning of plant canopies.
Ecophysiological mechanisms underlie plant responses to environmental conditions and the influence these responses have on ecological patterns and processes. In this Special Issue, with a particular interest in the interactions between climate change, environmental disturbance, and functional ecology, experimental observations are described at a range of spatial scales. A modeling framework is used in an effort to relate mechanistic responses to ecosystem functions and services, and link forest ecophysiology and environmental indicators. This Special Issue collects important advances in studying and monitoring plant–environment interactions, covering biogeographic gradients from Mediterranean woodlands to boreal forests and from Alpine mountains to tropical environments.
This book focuses on the recent progress of nanotechnology with emphasis on the interaction between nanoparticles and plants on the cellular level. It is devoted to understanding the pathways of nanomaterials entry into plant cell and their influence on cellular organelle processes and influence on crop yield. It consists of 16 chapters grouped in 3 parts: Part I Cellular mechanisms, Part II Cellular macromolecules, and Part III Implications of nanomaterials. Chapters present the plant response to nanomaterial applications including morphological, physiochemical, and anatomical changes and their effect on plant growth and productivity. The book discusses the mechanisms of absorbance and translocation of nanoparticles and their interaction with the plant cellular biochemical compounds and organelles. It presents the current perspective of nanomaterials influence on cellular processes which include photosynthesis, photorespiration and pigment synthesis and accumulation. In addition, it provides current understanding of the impact of nanomaterials on cellular macromolecules including carbohydrates, lipids, nucleic acids, proteins, hormones, and antioxidant defense activities. Collectively, these processes and biochemical compounds have implications on crop yield. Chapters are written by globally recognized scientists and subjected to a rigorous review process to ensure quality presentation and scientific precision. Chapter begins with an introduction that covers similar contexts and includes a detailed discussion of the topic accompanied by high-quality color images, diagrams, and relevant details and concludes with recommendations for future study directions. Chapter "Impact of Nanomaterials on Plant Secondary Metabolism" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Changes in atmospheric carbon dioxide concentrations and global climate conditions have altered photosynthesis and plant respiration across both geologic and contemporary time scales. Understanding climate change effects on plant carbon dynamics is critical for predicting plant responses to future growing conditions. Furthermore, demand for biofuel, fibre and food production is rapidly increasing with the ever-expanding global human population, and our ability to meet these demands is exacerbated by climate change. This volume integrates physiological, ecological, and evolutionary perspectives on photosynthesis and respiration responses to climate change. We explore this topic in the context of modeling plant responses to climate, including physiological mechanisms that constrain carbon assimilation and the potential for plants to acclimate to rising carbon dioxide concentration, warming temperatures and drought. Additional chapters contrast climate change responses in natural and agricultural ecosystems, where differences in climate sensitivity between different photosynthetic pathways can influence community and ecosystem processes. Evolutionary studies over past and current time scales provide further insight into evolutionary changes in photosynthetic traits, the emergence of novel plant strategies, and the potential for rapid evolutionary responses to future climate conditions. Finally, we discuss novel approaches to engineering photosynthesis and photorespiration to improve plant productivity for the future. The overall goals for this volume are to highlight recent advances in photosynthesis and respiration research, and to identify key challenges to understanding and scaling plant physiological responses to climate change. The integrated perspectives and broad scope of research make this volume an excellent resource for both students and researchers in many areas of plant science, including plant physiology, ecology, evolution, climate change, and biotechnology. For this volume, 37 experts contributed chapters that span modeling, empirical, and applied research on photosynthesis and respiration responses to climate change. Authors represent the following seven countries: Australia (6); Canada (9), England (5), Germany (2), Spain (3), and the United States (12).
Growth, reproduction, and geographical distribution of plants are profoundly influenced by their physiological ecology: the interaction with the surrounding physical, chemical, and biological environments. This textbook highlights mechanisms that underlie plant physiological ecology at the levels of physiology, biochemistry, biophysics, and molecular biology. At the same time, the integrative power of physiological ecology is well suited to assess the costs, benefits, and consequences of modifying plants for human needs and to evaluate the role of plants in natural and managed ecosystems. Plant Physiological Ecology, Third Edition is significantly updated, with many full color illustrations, and begins with the primary processes of carbon metabolism and transport, plant water relations, and energy balance. After considering individual leaves and whole plants, these physiological processes are then scaled up to the level of the canopy. Subsequent chapters discuss mineral nutrition and the ways in which plants cope with nutrient‐deficient or toxic soils. The book then looks at patterns of growth and allocation, life‐history traits, and interactions between plants and other organisms. Later chapters deal with traits that affect decomposition of plant material and with the consequences of plant physiological ecology at ecosystem and global levels. Plant Physiological Ecology, Third Edition features several boxed entries that extend the discussions of selected issues, a glossary, and numerous references to the primary and review literature. This significant new text is suitable for use in plant ecology courses, as well as classes ranging from plant physiology to plant molecular biology.
Plant Factory Basics, Applications, and Advances takes the reader from an overview of the need for and potential of plant factories with artificial lighting (PFALs) in enhancing food production and security to the latest advances and benefits of this agriculture environment. Edited by leading experts Toyoki Kozai, Genhua Niu, and Joseph Masabni, this book aims to provide a platform of PFAL technology and science, including ideas on its extensive business and social applications towards the next-generation PFALs. The book is presented in four parts: Introduction, Basics, Applications, and Advanced Research. Part 1 covers why PFALs are necessary for urban areas, how they can contribute to the United Nations' Sustainable Development Goals, and a definition of PFAL in relation to the term "indoor vertical farm." Part 2 presents SI units and radiometric, photometric, and photonmetric quantities, types, components, and performance of LED luminaires, hydroponics and aquaponics, and plant responses to the growing environment in PFALs. Part 3 describes the indexes and definition of various productivity aspects of PFAL, provides comparisons of the productivity of the past and the present operation of any given PFALs, and compares PFALs with one another from the productivity standpoint by applying the common indexes. Part 4 describes the advances in lighting and their effects on plant growth, breeding of indoor and outdoor crops, production of fruiting vegetables and head vegetables, and concluding with a focus on a human-centered perspective of urban agriculture. Providing real-world insights and experience, Plant Factory Basics, Applications, and Advances is the ideal resource for those seeking to take the next step in understanding and applying PFAL concepts. - Provides the most in-depth assessment of PFAL available - Compares PFAL to "indoor vertical farming and provides important insights into selecting optimal choice - Presents insights to inspire design and management of the next generation of PFALs
This book is for agriculturists, many of whom are either novices or non-computer programmers, about how they can build their mathematical models in Microsoft Excel. Of all modeling platforms, spreadsheets like Excel require the least proficiency in computer programming. This book introduces an Excel add-in called BuildIt (available for free as download) that shields users from having to use Excel's VBA (Visual Basic for Applications) programming language and yet allows agriculturists to build simple to large complex models without having to learn complicated computer programming techniques or to use sophisticated Excel techniques. This book first discusses how BuildIt works and how it is used to build models. Examples range from the simple to progressively more complex mathematical models. Ultimately, readers are taught how to build a generic crop growth model from its five core components: meteorology, canopy photosynthesis, energy balance, soil water, and crop growth development. Ultimately, agriculturists will be able to build their own mathematical models in Excel and concentrate more on the science and mathematics of their modeling work rather than being distracted by the intricacies of computer programming.