Download Free Canonical Problems In Scattering And Potential Theory Book in PDF and EPUB Free Download. You can read online Canonical Problems In Scattering And Potential Theory and write the review.

Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers
This self-contained book gives fundamental knowledge about scattering and diffraction of electromagnetic waves and fills the gap between general electromagnetic theory courses and collections of engineering formulas. The book is a tutorial for advanced students learning the mathematics and physics of electromagnetic scattering and curious to know how engineering concepts and techniques relate to the foundations of electromagnetics
This book endeavors to give the reader a strong base in the advanced theory of electromagnetic waves and its applications, while keeping pace with research in various other disciplines that apply electrostatics/electrodynamics theory. The treatment is highly mathematical, which tends to obscure the principles involved.
This book addresses the most advanced to-date mathematical approach and numerical methods in electromagnetic field theory and wave propagation. It presents the application of developed methods and techniques to the analysis of waves in various guiding structures —shielded and open metal-dielectric waveguides of arbitrary cross-section, planar and circular waveguides filled with inhomogeneous dielectrics, metamaterials, chiral media, anisotropic media and layered media with absorption. It also looks into spectral properties of wave propagation for the waveguide families being considered, and the relevant mathematical techniques such as spectral theory of non-self-adjoint operator-valued functions are described, including rigorous proofs of the existence of various types of waves. Further, numerical methods constructed on the basis of the presented mathematical approach and the results of numerical modeling for various structures are also described in depth. The book is beneficial to a broad spectrum of readers ranging from pure and applied mathematicians in electromagnetic field theory to researchers and engineers who are familiar with mathematics. Further, it is also useful as a supplementary text for upper-level undergraduate students interested in learning more advanced topics of mathematical methods in electromagnetics.
The advances in the theory of diffraction gratings and the applications of these results certainly determine the progress in several areas of applied science and engineering. The polarization converters, phase shifters and filters, quantum and solid-state oscillators, open quasi optical dispersive resonators and power compressors, slow-wave structures and patter forming systems, accelerators and spectrometer; that is still far from being a complete list of devices exploiting the amazing ability of periodic structures to perform controlled frequency, spatial, and polarization selection of signals. Diffraction gratings used to be and still are one of the most popular objects of analysis in electromagnetic theory. The further development of the theory of diffraction gratings, in spite of considerable achievements, is still very important presently. The requirements of applied optics and microwave engineering present the theory of diffraction gratings with many new problems which force us to search for new methods and tools for their resolution. Just in such way there appeared recently new fields, connected with the analysis, synthesis and definition of equivalent parameters of artificial materials – layers and coatings, having periodic structure and possessing features, which can be found in natural materials only in extraordinary or exceptional situations. In this book the authors present results of the electromagnetic theory of diffraction gratings that may constitute the base of further development of this theory which can meet the challenges provided by the most recent requirements of fundamental and applied science. The following issues will be considered in the book Authentic methods of analytical regularization, that perfectly match the requirements of analysis of resonant scattering of electromagnetic waves by gratings; Spectral theory of gratings, providing a reliable foundation for the analysis of spatial – frequency transformations of electromagnetic fields occurring in open periodic resonators and waveguides; Parametric Fourier method and C-method, that are oriented towards the efficient numerical analysis of transformation properties of fields in the case of arbitrary profile periodic boundary between dielectric media and multilayered conformal arrays; Rigorous methods for analysis of transient processes and time-spatial transformations of electromagnetic waves in resonant situations, based on development and incorporation in standard numerical routines of FDTD of so called explicit absorbing boundary conditions; New approaches to the solution of homogenization problems – the key problem arising in construction of metamaterials and meta surfaces; New physical results about the resonance scattering of pulse and monochromatic waves by periodic structures, including structures with chiral or left-handed materials; Methods and the results of the solutions of several actual applied problems of analysis and synthesis of pattern creating gratings, power compressors, resonance radiators of high capacity short radio pulses, open electromagnetic structures for the systems of resonant quasi optics and absorbing coatings.
Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producing experimentally testable predictions, which at present essentially means Perturbative QFT. However, after more than fifty years of QFT, we still are in the embarrassing situation of not knowing a single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbative control. As a reaction to these consistency problems one may take the position that they are related to our ignorance of the physics of small distances and that QFT is only an effective theory, so that radically new ideas are needed for a consistent quantum theory of relativistic interactions (in 3+1 dimensions). The book starts by discussing the conflict between locality or hyperbolicity and positivity of the energy for relativistic wave equations, which marks the origin of quantum field theory, and the mathematical problems of the perturbative expansion (canonical quantization, interaction picture, non-Fock representation, asymptotic convergence of the series etc.). The general physical principles of positivity of the energy, Poincare' covariance and locality provide a substitute for canonical quantization, qualify the non-perturbative foundation and lead to very relevant results, like the Spin-statistics theorem, TCP symmetry, a substitute for canonical quantization, non-canonical behaviour, the euclidean formulation at the basis of the functional integral approach, the non-perturbative definition of the S-matrix (LSZ, Haag-Ruelle-Buchholz theory). A characteristic feature of gauge field theories is Gauss' law constraint. It is responsible for the conflict between locality of the charged fields and positivity, it yields the superselection of the (unbroken) gauge charges, provides a non-perturbative explanation of the Higgs mechanism in the local gauges, implies the infraparticle structure of the charged particles in QED and the breaking of the Lorentz group in the charged sectors. A non-perturbative proof of the Higgs mechanism is discussed in the Coulomb gauge: the vector bosons corresponding to the broken generators are massive and their two point function dominates the Goldstone spectrum, thus excluding the occurrence of massless Goldstone bosons. The solution of the U(1) problem in QCD, the theta vacuum structure and the inevitable breaking of the chiral symmetry in each theta sector are derived solely from the topology of the gauge group, without relying on the semiclassical instanton approximation.