Download Free Canadian Forest Fire Behavior Prediction Fbp System Book in PDF and EPUB Free Download. You can read online Canadian Forest Fire Behavior Prediction Fbp System and write the review.

The Canadian Forest Fire Behaviour Prediction (FBP) System provides a systematic method of assessing fire behaviour. The FBP System has 14 primary inputs that can be divided into 5 general categories: fuels, weather, topography, foliar moisture content, and type and duration of prediction. In the FBP System these inputs are used to mathematically develop 4 primary and 11 secondary outputs. Primary outputs are generally based on a fire intensity equation, and secondary outputs are calculated using a simple elliptical fire growth model. This publication provides diagrams, examples, and exercises that explain the FBP System in a user-oriented manner. This guideline delineates the interpretation of the FBP System's inputs and outputs and details how the predictions are derived.
The Canadian Forest Fire Behavior Prediction (FBP) system is a systematic method for assessing wildland fire behaviour potential. Presented in tabular format, this guide provides a simplified version of the system and is designed to assist field staff in making approximations of FBP System outputs.
The Canadian Forest Fire Behavior Prediction (FBP) System is a systematic method for assessing wildland fire behavior potential. This field guide provides a simplified version of the system, presented in tabular format. It was prepared to assist field staff in making first approximations of FBP System outputs when computer-based applications are not available. Quantitative estimates of head fire spread rate, fire intensity, type of fire, and spread distance, elliptical fire area, perimeter, and perimeter growth rate are provided for eighteen fuel types within five broad groupings (coniferous, deciduous, and mixedwood forests, logging slash, and grass), covering most of the major wildland fuel types found in Canada. The FBP System is intended to supplement, not replace, the experience and judgment of fire personnel.
The Canadian Forest Fire Behaviour Prediction System (FBP) is a complex system that mathematically expresses and integrates many of the major fuel, weather and topographic features that influence fire behaviour. The FBP System Interactive Training and Reference program uses the interaction of video, audio, text, graphics, photos and animation to teach the FBP System. The CD-ROM also includes three interactive case studies and an FBP System Calculator.Minimum system requirements:Windows 95 or NT, Pentium 100 with 16 MB of RAM, 100 MB of free hard drive space (10 MB actually required for software), 8x CD-ROM, mouse, SVGA monitor, sound card, 'Video for Windows' software (included).For more information on this and other Environmental Training Centre multimedia products, visit thewebsite.
The Canadian Forest Fire Behavior Prediction (FBP) System is a subsystem of the larger Canadian Forest Fire Danger Rating System, which also includes the Canadian Forest Fire Weather Index (FWI) System. The FBP system provides quantitative estimates of head fire spread rate, fuel consumption, fire intensity and fire description and gives estimates of fire area, perimeter, perimeter growth rate and flank and back fire behaviour. This report describes the structure and content of the system and its use with forest fire characteristics.
The Canadian Forest Fire Behavior Prediction (FBP) System is a systematic method for assessing wildland fire behavior potential. This field guide provides a simplified version of the system, presented in tabular format.
This report describes a new set of standard fire behavior fuel models for use with Rothermels surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.
The increased fi re load is expected to increase the cost of fi re management in the province 16% by the year 2040 and 54% by the year 2090 over year 2000 costs, exclusive of infl ation or other factors. [...] In addition to increases in seasonal fi re severity indices, a number of these studies also predict increases in the frequency of occurrence of extreme fi re danger in some areas of the country (e.g., Stocks et al. [...] This study uses lightning- and people-caused fi re occurrence models developed specifi cally for Ontario with GCM projections of future climate and Ontario's level of protection analysis software, LEOPARDS (see McAlpine and Hirsch 1999) to estimate the impacts of climate change on the fi re management organization both in terms of numbers of escaped fi res and with respect to changes in operationa [...] The sites of the GCM grid cell centres and OMNR weather stations used are shown in Figure 1. Fire Weather and Fire Danger To create the fi re climate of a future decade, the monthly anomalies were applied to the daily data from the OMNR fi re weather station archive from the years 1992-2001 (corresponding to the period over which lightning records were available). [...] The Fire Behaviour Prediction (FBP) System (Forestry Canada Fire Danger Group 1992) was used in conjunction with the Initial Spread Index (ISI), the Build-up Index (BUI) (calculated on the detection date of the fi re using the FWI System), and the fuel type associated with the fi re to estimate an initial rate of spread for each fi re.
This weather guide includes detailed specifications for locating and instrumenting fire weather stations, taking weather observations, and overwintering the Drought Code component of the FWI System. The sensitivity of the FWI System components to weather elements is represented quantitatively. The importance of weather that is not directly observable is discussed in the context of fuel moisture and fire behavior. Current developments in the observation and measurement of fire weather and the forecasting of fire danger are discussed, along with the implications for the reporting of fire weather of increasingly automated fire management information systems.