Download Free Call Admission Control In Mobile Cellular Networks Book in PDF and EPUB Free Download. You can read online Call Admission Control In Mobile Cellular Networks and write the review.

Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently. CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators. The second approach is concerned with formulation of CAC as an optimization problem to minimize call drop, satisfying a set of constraints on feasibility and availability of channels, hotness of cells, and velocity and angular displacement of mobile stations. Evolutionary techniques, including Genetic Algorithm and Biogeography Based Optimization, have been employed to solve the optimization problems. The proposed approaches outperform traditional methods with respect to grade and quality of services.
Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently. CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators. The second approach is concerned with formulation of CAC as an optimization problem to minimize call drop, satisfying a set of constraints on feasibility and availability of channels, hotness of cells, and velocity and angular displacement of mobile stations. Evolutionary techniques, including Genetic Algorithm and Biogeography Based Optimization, have been employed to solve the optimization problems. The proposed approaches outperform traditional methods with respect to grade and quality of services.
Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently. CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators. The second approach is concerned with formulation of CAC as an optimization problem to minimize call drop, satisfying a set of constraints on feasibility and availability of channels, hotness of cells, and velocity and angular displacement of mobile stations. Evolutionary techniques, including Genetic Algorithm and Biogeography Based Optimization, have been employed to solve the optimization problems. The proposed approaches outperform traditional methods with respect to grade and quality of services.
Mobile and wireless communications applications have a clear impact on improving the humanity wellbeing. From cell phones to wireless internet to home and office devices, most of the applications are converted from wired into wireless communication. Smart and advanced wireless communication environments represent the future technology and evolutionary development step in homes, hospitals, industrial, vehicular and transportation systems. A very appealing research area in these environments has been the wireless ad hoc, sensor and mesh networks. These networks rely on ultra low powered processing nodes that sense surrounding environment temperature, pressure, humidity, motion or chemical hazards, etc. Moreover, the radio frequency (RF) transceiver nodes of such networks require the design of transmitter and receiver equipped with high performance building blocks including antennas, power and low noise amplifiers, mixers and voltage controlled oscillators. Nowadays, the researchers are facing several challenges to design such building blocks while complying with ultra low power consumption, small area and high performance constraints. CMOS technology represents an excellent candidate to facilitate the integration of the whole transceiver on a single chip. However, several challenges have to be tackled while designing and using nanoscale CMOS technologies and require innovative idea from researchers and circuits designers. While major researchers and applications have been focusing on RF wireless communication, optical wireless communication based system has started to draw some attention from researchers for a terrestrial system as well as for aerial and satellite terminals. This renewed interested in optical wireless communications is driven by several advantages such as no licensing requirements policy, no RF radiation hazards, and no need to dig up roads besides its large bandwidth and low power consumption. This second part of the book, Mobile and Wireless Communications: Key Technologies and Future Applications, covers the recent development in ad hoc and sensor networks, the implementation of state of the art of wireless transceivers building blocks and recent development on optical wireless communication systems. We hope that this book will be useful for students, researchers and practitioners in their research studies.
Contains the latest research, case studies, theories, and methodologies within the field of wireless technologies.
The Handbook of Algorithms for Wireless Networking and Mobile Computing focuses on several aspects of mobile computing, particularly algorithmic methods and distributed computing with mobile communications capability. It provides the topics that are crucial for building the foundation for the design and construction of future generations of mobile and wireless networks, including cellular, wireless ad hoc, sensor, and ubiquitous networks. Following an analysis of fundamental algorithms and protocols, the book offers a basic overview of wireless technologies and networks. Other topics include issues related to mobility, aspects of QoS provisioning in wireless networks, future applications, and much more.
Novel Algorithms and Techniques in Telecommunications and Networking includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology and Automation, Telecommunications and Networking. Novel Algorithms and Techniques in Telecommunications and Networking includes selected papers form the conference proceedings of the International Conference on Telecommunications and Networking (TeNe 08) which was part of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering (CISSE 2008).
Due to the great success and enormous impact of IP networks, In ternet access (such as sending and receiving e-mails) and web brows ing have become the ruling paradigm for next generation wireless systems. On the other hand, great technological and commercial success of services and applications is being witnessed in mobile wire less communications with examples of cellular, pes voice telephony and wireless LANs. The service paradigm has thus shifted from the conventional voice service to seamlessly integrated high quality mul timedia transmission over broadband wireless mobile networks. The multimedia content may include data, voice, audio, image, video and so on. With availability of more powerful portable devices, such as PDA, portable computer and cellular phone, coupled with the easier access to the core network (using a mobile device), the number of mobile users and the demand for multimedia-based applications is increasing rapidly. As a result, there is an urgent need for a sys tem that supports heterogeneous multimedia services and provides seamless access to the desired resources via wireless connections. Therefore, the convergence of multimedia communication and wireless mobile networking technologies into the next generation wireless multimedia (WMM) networks with the vision of "anytime, anywhere, anyform" information system is the certain trend in the foreseeable future. However, successful combination of these two technologies presents many challenges such as available spectral bandwidth, energy efficiency, seamless end-to-end communication, robustness, security, etc.
This book constitutes the refereed proceedings of the 4th International IFIP-TC6 Networking Conference, NETWORKING 2005, held in Waterloo, Canada in May 2005. The 105 revised full papers and 36 posters were carefully reviewed and selected from 430 submissions. The papers are organized in topical sections on peer-to-peer networks, Internet protocols, wireless security, network security, wireless performance, network service support, network modeling and simulation, wireless LAN, optical networks, Internet performance and Web applications, ad-hoc networks, adaptive networks, radio resource management, Internet routing, queuing models, monitoring, network management, sensor networks, overlay multicast, QoS, wirless scheduling, multicast traffic management and engineering, mobility management, bandwith management, DCMA, and wireless resource management.
Recent Developments in Mobile Communications - A Multidisciplinary Approach offers a multidisciplinary perspective on the mobile telecommunications industry. The aim of the chapters is to offer both comprehensive and up-to-date surveys of recent developments and the state-of-the-art of various economical and technical aspects of mobile telecommunications markets. The economy-oriented section offers a variety of chapters dealing with different topics within the field. An overview is given on the effects of privatization on mobile service providers' performance; application of the LAM model to market segmentation; the details of WAC; the current state of the telecommunication market; a potential framework for the analysis of the composition of both ecosystems and value networks using tussles and control points; the return of quality investments applied to the mobile telecommunications industry; the current state in the networks effects literature. The other section of the book approaches the field from the technical side. Some of the topics dealt with are antenna parameters for mobile communication systems; emerging wireless technologies that can be employed in RVC communication; ad hoc networks in mobile communications; DoA-based Switching (DoAS); Coordinated MultiPoint transmission and reception (CoMP); conventional and unconventional CACs; and water quality dynamic monitoring systems based on web-server-embedded technology.