Download Free Calibration Methods For Reproducible And Comparable Electromagnetic Partial Discharge Measurements In Power Transformers Book in PDF and EPUB Free Download. You can read online Calibration Methods For Reproducible And Comparable Electromagnetic Partial Discharge Measurements In Power Transformers and write the review.

The reliability of electrical energy networks depends on the quality and availability of their electrical equipment, e.g., power transformers. Local failures inside their insulation can lead to breakdowns resulting in high outage and penalty costs. To prevent these destructive events, power transformers are tested for partial discharge (PD) activity in a routine test before shipment. Furthermore, PD activity can be evaluated as a diagnostic measurement on-site (on-line or off-line) or be constantly monitored during service using the ultra-high frequency (UHF) method. In this thesis, a calibration procedure is proposed for the UHF method used in power transformers, which is lacking so far. The calibration process is required to ensure both reproducibility and comparability of UHF measurements. Only a calibrated UHF measurement procedure can be deemed reliable and eventually be introduced to supplement in (site-)acceptance tests of power transformers. The proposed calibration method considers two factors: The influence of the UHF sensors' sensitivity and that of the UHF instrument characteristics, including accessories like cables, pre-amplifier, etc. The UHF instruments' influence is corrected by using a defined and invariable test signal as a reference for all recording devices comparable to the calibration method used in IEC 60270 for electrical PD measurement. The sensitivity of the UHF sensor is addressed by a characterization of UHF sensors using the antenna factor (AF) measured in a special reproducible setup, i.e., a GTEM cell. In this thesis, a self-built GTEM cell is presented, which is oil-filled to address the environmental conditions inside a transformer where the sensor will be used. With such a cell, influences on the AF of UHF sensors are investigated, and it is shown that sensor sensitivities measured in an air-filled cell can be corrected to the oil environment. A practical evaluation of the proposed calibration procedure is performed in a laboratory setup on a distribution transformer with different UHF instruments and sensors using artificial PD signals and real high voltage driven PD sources. Finally, this thesis identifies future research topics, which may be needed to improve the proposed UHF calibration procedure for power transformers and the UHF method in general.
Practical Partial Discharge Measurement on Electrical Equipment Accessible reference dealing with (partial discharge) PD measurement in all types of high voltage equipment using modern digital PD detectors Practical Partial Discharge Measurement on Electrical Equipment is a timely update in the field of partial discharges (PD), covering both holistic concepts and specific modern applications in one volume. The first half of the book educates the reader on what PD is and the general principles of how it is measured and interpreted. The second half of the book is similar to a handbook, with a chapter devoted to PD measurements in each type of high voltage (HV) equipment. These chapters contain specific information of the insulation system design, causes of PD in that equipment, off-line and on-line measurement methods, interpretation methods, and relevant standards. The work is authored by four well-known experts in the field of PD measurement who have published hundreds of technical papers on the subject and performed thousands of PD measurements on all the different types of HV equipment covered in the book. The authors have also had relationships with PD detector manufacturers, giving them key insights into test instruments and practical measurements. Sample topics covered in the work include: Physics of PD, discharge phenomena (contact sparking and vibration sparking), and an introduction to PD measurement (electrical, optical, acoustic, and chemical) Electrical PD detection (types of sensors), RF PD detection (antenna, TEV), and PD instrumentation and display Off-line and on-line PD measurements, general principles of PD interpretation, and laboratory PD testing of lumped test objects PD in different types of HV equipment (power cables, power transformers, air insulated metal-clad switchgear, rotating machines, gas-insulated switchgear, and more) For HV equipment OEMs, users of HV equipment, or employees of companies that provide PD testing services to clients, Practical Partial Discharge Measurement on Electrical Equipment is an essential reference to help understand general concepts about the topic and receive expert guidance during specific practical applications.
The new edition of this book incorporates the recent remarkable changes in electric power generation, transmission and distribution. The consequences of the latest development to High Voltage (HV) test and measuring techniques result in new chapters on Partial Discharge measurements, Measurements of Dielectric Properties, and some new thoughts on the Shannon Theorem and Impuls current measurements. This standard reference of the international high-voltage community combines high voltage engineering with HV testing techniques and HV measuring methods. Based on long-term experience gained by the authors the book reflects the state of the art as well as the future trends in testing and diagnostics of HV equipment. It ensures a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.
The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field. High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems also demand increased attention. The authors hope that their experience will be of use to students of Electrical Engineering confronted with High Voltage problems in their studies, in research and development and also in the testing field. - Benefit from a completely revised edition - Brings you up-to-date with th latest international developments in High Voltage and Measurement technology - An essential reference for engineers in the testing field
Covering the fundamental theory of electric power transformers, this book provides the background required to understand the basic operation of electromagnetic induction as applied to transformers. The book is divided into three fundamental groupings: one stand-alone chapter is devoted to Theory and Principles, nine chapters individually treat majo
Maintaining appropriate power systems and equipment expertise is necessary for a utility to support the reliability, availability, and quality of service goals demanded by energy consumers now and into the future. However, transformer talent is at a premium today, and all aspects of the power industry are suffering a diminishing of the supply of knowledgeable and experienced engineers.Now in print for over 80 years since initial publication in 1925 by Johnson & Phillips Ltd, the J & P Transformer Book continues to withstand the test of time as a key body of reference material for students, teachers, and all whose careers are involved in the engineering processes associated with power delivery, and particularly with transformer design, manufacture, testing, procurement, application, operation, maintenance, condition assessment and life extension.Current experience and knowledge have been brought into this thirteenth edition with discussions on moisture equilibrium in the insulation system, vegetable based natural ester insulating fluids, industry concerns with corrosive sulphur in oil, geomagnetic induced current (GIC) impacts, transportation issues, new emphasis on measurement of load related noise, and enhanced treatment of dielectric testing (including Frequency Response Analysis), Dissolved Gas analysis (DGA) techniques and tools, vacuum LTCs, shunt and series reactors, and HVDC converter transformers. These changes in the thirteenth edition together with updates of IEC reference Standards documentation and inclusion for the first time of IEEE reference Standards, provide recognition that the transformer industry and market is truly global in scale. -- From the foreword by Donald J. FallonMartin Heathcote is a consultant specializing in power transformers, primarily working for utilities. In this context he has established working relationships with transformer manufacturers on several continents. His background with Ferranti and the UK's Central Electricity Generating Board (CEGB) included transformer design and the management and maintenance of transformer-based systems.* The definitive reference for all involved in designing, installing, monitoring and maintaining high-voltage systems using power transformers (electricity generation and distribution sector; large-scale industrial applications)* The classic reference work on power transformers and their applications: first published in 1925, now brought fully up to date in this thirteenth edition* A truly practical engineering approach to design, monitoring and maintenance of power transformers – in electricity generation, substations, and industrial applications.
The second edition of Fundamentals of Anaesthesia builds upon the success of the first edition, and encapsulates the modern practice of anaesthesia in a single volume. Written and edited by a team of expert contributors, it provides a comprehensive but easily readable account of all of the information required by the FRCA Primary examination candidate and has been expanded to include more detail on all topics and to include new topics now covered in the examination. As with the previous edition, presentation of information is clear and concise, with the use of lists, tables, summary boxes and line illustrations where necessary to highlight important information and aid the understanding of complex topics. Great care has been taken to ensure an unrivalled consistency of style and presentation throughout.
This title presents the general principles of instrumentation processes. It explains the theoretical analysis of physical phenomena used by standard sensors and transducers to transform a physical value into an electrical signal. The pre-processing of these signals through electronic circuits – amplification, signal filtering and analog-to-digital conversion – is then detailed, in order to provide useful basic information. Attention is then given to general complex systems. Topics covered include instrumentation and measurement chains, sensor modeling, digital signal processing and diagnostic methods and the concept of smart sensors, as well as microsystem design and applications. Numerous industrial examples punctuate the discussion, setting the subjects covered in the book in their practical context.
The metrology guide provides the basis for critical comparisons among seven measurement techniques for average noise factor and effective input noise temperature. The techniques that are described, discussed, and analyzed include the (1) Y-Factor, (2) 3-dB, (3) Automatic, (4) Gain Control, (5) CW, (6) Tangential, and (7) Cmparison Techniques. The analyses yield working equations and error equations by which accuracy capabilities are compared. Each technique is also analyzed for (a) frequency range for best measurement results, (b) special instrumentation requirements, (c) speed and convenience, (d) operator skill required, and (e) special measurement problems. General instrumentation requirements and practical measurement problems are discussed for the benefit of the non-expert metrologist. (Modified author abstract).