Download Free Calculus Single And Multivariable Book in PDF and EPUB Free Download. You can read online Calculus Single And Multivariable and write the review.

A revision of the best selling innovative Calculus text on the market. Functions are presented graphically, numerically, algebraically, and verbally to give readers the benefit of alternate interpretations. The text is problem driven with exceptional exercises based on real world applications from engineering, physics, life sciences, and economics. Revised edition features new sections on limits and continuity, limits, l'Hopital's Rule, and relative growth rates, and hyperbolic functions.
Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.
This textbook focuses on one of the most valuable skills in multivariable and vector calculus: visualization. With over one hundred carefully drawn color images, students who have long struggled picturing, for example, level sets or vector fields will find these abstract concepts rendered with clarity and ingenuity. This illustrative approach to the material covered in standard multivariable and vector calculus textbooks will serve as a much-needed and highly useful companion. Emphasizing portability, this book is an ideal complement to other references in the area. It begins by exploring preliminary ideas such as vector algebra, sets, and coordinate systems, before moving into the core areas of multivariable differentiation and integration, and vector calculus. Sections on the chain rule for second derivatives, implicit functions, PDEs, and the method of least squares offer additional depth; ample illustrations are woven throughout. Mastery Checks engage students in material on the spot, while longer exercise sets at the end of each chapter reinforce techniques. An Illustrative Guide to Multivariable and Vector Calculus will appeal to multivariable and vector calculus students and instructors around the world who seek an accessible, visual approach to this subject. Higher-level students, called upon to apply these concepts across science and engineering, will also find this a valuable and concise resource.
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.
This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.
Classroom-tested and lucidly written, Multivariable Calculus gives a thorough and rigoroustreatment of differential and integral calculus of functions of several variables. Designed as ajunior-level textbook for an advanced calculus course, this book covers a variety of notions,including continuity , differentiation, multiple integrals, line and surface integrals, differentialforms, and infinite series. Numerous exercises and examples throughout the book facilitatethe student's understanding of important concepts.The level of rigor in this textbook is high; virtually every result is accompanied by a proof. Toaccommodate teachers' individual needs, the material is organized so that proofs can be deemphasizedor even omitted. Linear algebra for n-dimensional Euclidean space is developedwhen required for the calculus; for example, linear transformations are discussed for the treatmentof derivatives.Featuring a detailed discussion of differential forms and Stokes' theorem, Multivariable Calculusis an excellent textbook for junior-level advanced calculus courses and it is also usefulfor sophomores who have a strong background in single-variable calculus. A two-year calculussequence or a one-year honor calculus course is required for the most successful use of thistextbook. Students will benefit enormously from this book's systematic approach to mathematicalanalysis, which will ultimately prepare them for more advanced topics in the field.
The authors goal for the book is that its clearly written, could be read by a calculus student and would motivate them to engage in the material and learn more. Moreover, to create a text in which exposition, graphics, and layout would work together to enhance all facets of a student’s calculus experience. They paid special attention to certain aspects of the text: 1. Clear, accessible exposition that anticipates and addresses student difficulties. 2. Layout and figures that communicate the flow of ideas. 3. Highlighted features that emphasize concepts and mathematical reasoning including Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical Perspective. 4. A rich collection of examples and exercises of graduated difficulty that teach basic skills as well as problem-solving techniques, reinforce conceptual understanding, and motivate calculus through interesting applications. Each section also contains exercises that develop additional insights and challenge students to further develop their skills.
This book covers the standard material for a one-semester course in multivariable calculus. The topics include curves, differentiability and partial derivatives, multiple integrals, vector fields, line and surface integrals, and the theorems of Green, Stokes, and Gauss. Roughly speaking, the book is organized into three main parts corresponding to the type of function being studied: vector-valued functions of one variable, real-valued functions of many variables, and, finally, the general case of vector-valued functions of many variables. As is always the case, the most productive way for students to learn is by doing problems, and the book is written to get to the exercises as quickly as possible. The presentation is geared towards students who enjoy learning mathematics for its own sake. As a result, there is a priority placed on understanding why things are true and a recognition that, when details are sketched or omitted, that should be acknowledged. Otherwise, the level of rigor is fairly normal. Matrices are introduced and used freely. Prior experience with linear algebra is helpful, but not required. Latest corrected printing: January 8, 2020. Updated information available online at the Open Textbook Library.
Calculus: Multivariable, 6th Edition continues the effort to promote courses in which understanding and computation reinforce each other. The 6th Edition reflects the many voices of users at research universities, four-year colleges, community colleges, and secondary schools. This new edition has been streamlined to create a flexible approach to both theory and modeling. For instructors wishing to emphasize the connection between calculus and other fields, the text includes a variety of problems and examples from the physical, health, and biological sciences, engineering and economics. In addition, new problems on the mathematics of sustainability and new case studies on calculus in medicine by David E. Sloane, MD have been added. WileyPLUS sold separately from text.