Download Free Calcul Differentiel Et Equations Differentielles Book in PDF and EPUB Free Download. You can read online Calcul Differentiel Et Equations Differentielles and write the review.

Exercices originaux accompagnés par leurs corrigés, cet ouvrage s'adresse principalement aux étudiants de licence de Mathématiques (L3), et principalement du module d'enseignement Calcul différentiel-Equations différentielles. Ce livre scientifique pourra également être utile aux élèves ingénieurs et aux étudiants préparant des masters ou des concours de recrutements (Capes, Agrégations). Il s'agit d'une recueil de 36 devoirs, au sens premier de vocable, c'est à dire de travaux à effectuer, en temps limité ou chez soi, seul ou à plusieurs. La durée estimée moyenne est de 3 heures pour chaque devoir, lequel comporte généralement deux ou trois exercices indépendants. La plupart des problèmes et exercices proposés sont originaux, ils ont été posés durant les dernières années dans plusieurs universités, sous forme d'examens intermédiaires ou terminaux en temps limité ou à rendre rédigés après y avoir travailler chez soi. Les thèmes traités suivent globalement le déroulement d'un programme standard de module Calcul différentiel-Equations différentielles, avec au fur et à mesure de l'avancée dans le livre, un retour sur les chapitres passés: une progression en spirale plutôt linéaire.
Exercices originaux accompagnés par leurs corrigés, cet ouvrage s'adresse principalement aux étudiants de licence de Mathématiques (L3), et principalement du module d'enseignement Calcul différentiel-Equations différentielles. Ce livre scientifique pourra également être utile aux élèves ingénieurs et aux étudiants préparant des masters ou des concours de recrutements (Capes, Agrégations). Il s'agit d'une recueil de 36 devoirs, au sens premier de vocable, c'est à dire de travaux à effectuer, en temps limité ou chez soi, seul ou à plusieurs. La durée estimée moyenne est de 3 heures pour chaque devoir, lequel comporte généralement deux ou trois exercices indépendants. La plupart des problèmes et exercices proposés sont originaux, ils ont été posés durant les dernières années dans plusieurs universités, sous forme d'examens intermédiaires ou terminaux en temps limité ou à rendre rédigés après y avoir travailler chez soi. Les thèmes traités suivent globalement le déroulement d'un programme standard de module Calcul différentiel-Equations différentielles, avec au fur et à mesure de l'avancée dans le livre, un retour sur les chapitres passés: une progression en spirale plutôt linéaire.
This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory.To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included.The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations.
This book provides the mathematical basis for investigating numerically equations from physics, life sciences or engineering. Tools for analysis and algorithms are confronted to a large set of relevant examples that show the difficulties and the limitations of the most naïve approaches. These examples not only provide the opportunity to put into practice mathematical statements, but modeling issues are also addressed in detail, through the mathematical perspective.
This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.
This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a self-contained and accessible manner. Although the field is often considered a “classical” one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role.The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and mesh generation in finite element methods.This volume will be very useful to graduate students and researchers in pure and applied mathematics.
This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.
Original, rigorous, and lively, this text offers a concise approach to classical and contemporary topics in differential calculus. Based on courses conducted by the author at the Universit Pierre et Marie Curie, it encourages readers to pursue the subject in greater depth. The calculus is presented in a Banach space setting, covering: - Vector fields - One-parameter groups of diffeomorphisms - The Morse-Palais lemma - Differentiable submanifolds The treatment also examines applications to differential equations and the calculus of variables. For upper-level undergraduates and graduate students of analysis.