Download Free Calcium As A Cellular Regulator Book in PDF and EPUB Free Download. You can read online Calcium As A Cellular Regulator and write the review.

Encompassing all aspects of calcium signalling, from methods of measuring calcium in cells to the molecular mechanisms for decoding its information, this comprehensive book balances historical aspects and state of the art developments.
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
Calcium Entry Channels in Non-Excitable Cells focuses on methods of investigating the structure and function of non-voltage gated calcium channels. Each chapter presents important discoveries in calcium entry pathways, specifically dealing with the molecular identification of store-operated calcium channels which were reviewed by earlier volumes in the Methods in Signal Transduction series. Crystallographic and pharmacological approaches to the study of calcium channels of epithelial cells are also discussed. Calcium ion is a messenger in most cell types. Whereas voltage gated calcium channels have been studied extensively, the non-voltage gated calcium entry channel genes have only been identified relatively recently. The book will fill this important niche.
T cells play a vital role mediating adaptive immunity, a specific acquired resistance to an infectious agent produced by the introduction of an antigen. There are a variety of T cell types with different functions. They are called T cells, because they are derived from the thymus gland. This volume discusses how T cells are regulated through the operation of signaling mechanisms. Topics covered include positive and negative selection, early events in T cell receptor engagement, and various T cell subsets.
Store-operated calcium channels are found in most animal cells and regulate many cellular functions including cell division, growth, differentiation, and cell death. This volume provides a concise and informative overview of the principles of store-operated calcium entry and the key developments in the field from researchers who have led these advances. The overall goal of the volume is to provide interested students and investigators with sufficient information to enable a broad understanding of the progress and current excitement in the field. The volume contains a wealth of information that even experienced investigators in the field will find useful. - The volume provides a comprehensive overview of the mechanisms and functions of store-operated calcium channels - Contributors are authoritative researchers who have produced important advances in the field - The volume is well-illustrated with cartoons and data to facilitate easy comprehension of the subject
This book is about the role of calcium and calmodulin in the cell nucleus. Calcium, which is an important second messenger of signal transduction pathways, can also operate in the cell nucleus. Different calcium binding proteins, which are the targets of cellular calcium, have been identified in the nucleus of many different cell types. Prominent among these calcium binding proteins is calmodulin, which appears to be involved in the regulation of major nuclear functions such as gene expression and DNA replication.
A comprehensive compendium of scholarly contributions relating to bacterial virulence gene regulation. • Provides insights into global control and the switch between distinct infectious states (e.g., acute vs. chronic). • Considers key issues about the mechanisms of gene regulation relating to: surface factors, exported toxins and export mechanisms. • Reflects on how the regulation of intracellular lifestyles and the response to stress can ultimately have an impact on the outcome of an infection. • Highlights and examines some emerging regulatory mechanisms of special significance. • Serves as an ideal compendium of valuable topics for students, researchers and faculty with interests in how the mechanisms of gene regulation ultimately affect the outcome of an array of bacterial infectious diseases.
Authors highlight several promising discoveries in the field of calcium signaling that provide new information about both genetic and acquired pathologies. Their discussions will give you new insights into the underlying causes of congenital and acquired diseases and point the way to new, even more promising research and therapies.
The ability to regulate cell volume in the face of osmotic challenge is one of the most fundamental of cellular homeostatic mechanisms. Cellular and Molecular Physiology of Cell Volume Regulation is an integrated collection of articles describing key aspects of cell volume control. The book has been organized around concepts and cellular/molecular processes rather than around mechanisms of volume regulation in specific cell types in order to make it more accessible to a multidisciplinary audience of students, instructors, and researchers.
This volume details our current understanding of the architecture and signaling capabilities of the B cell antigen receptor (BCR) in health and disease. The first chapters review new insights into the assembly of BCR components and their organization on the cell surface. Subsequent contributions focus on the molecular interactions that connect the BCR with major intracellular signaling pathways such as Ca2+ mobilization, membrane phospholipid metabolism, nuclear translocation of NF-kB or the activation of Bruton’s Tyrosine Kinase and MAP kinases. These elements orchestrate cytoplasmic and nuclear responses as well as cytoskeleton dynamics for antigen internalization. Furthermore, a key mechanism of how B cells remember their cognate antigen is discussed in detail. Altogether, the discoveries presented provide a better understanding of B cell biology and help to explain some B cell-mediated pathogenicities, like autoimmune phenomena or the formation of B cell tumors, while also paving the way for eventually combating these diseases.