Download Free Cad Cam Of Sculptured Surfaces On Multi Axis Nc Machine Book in PDF and EPUB Free Download. You can read online Cad Cam Of Sculptured Surfaces On Multi Axis Nc Machine and write the review.

Many products are designed with aesthetic sculptured surfaces to enhance their appearance, an important factor in customer satisfaction, especially for automotive and consumer electronics products. In other cases, products have sculptured surfaces to meet functional requirements. Functional surfaces interact with the environment or with other surfaces. Because of this, functional surfaces can also be called dynamic surfaces. Functional surfaces do not possess the property to slide over itself, which causes significant complexity in machining of sculptured surfaces. The application of multiaxis numerically controlled (NC) machines is the only way for an efficient machining of sculptured surfaces. Reduction of machining time is a critical issue when machining sculptured surfaces on multiaxis NC machines. To reduce the machining cost of a sculptured surface, the machining time must be as short as possible. Table of Contents: Introduction / Analytical Representation of Scupltured Surfaces / Kinematics of Sculptured-Surface Machining / Analytical Description of the Geometry of Contact of the Sculptured Surface and of the Generating Surface of the Form-Cutting Tool / Form-Cutting Tools of Optimal Design / Conditions of Proper Sculptured-Surface Generation / Predicted Accuracy of the Machined Sculptured Surface / Optimal Sculptured-Surface Machining
Many products are designed with aesthetic sculptured surfaces to enhance their appearance, an important factor in customer satisfaction, especially for automotive and consumer electronics products. In other cases, products have sculptured surfaces to meet functional requirements. Functional surfaces interact with the environment or with other surfaces. Because of this, functional surfaces can also be called dynamic surfaces. Functional surfaces do not possess the property to slide over itself, which causes significant complexity in machining of sculptured surfaces. The application of multiaxis numerically controlled (NC) machines is the only way for an efficient machining of sculptured surfaces. Reduction of machining time is a critical issue when machining sculptured surfaces on multiaxis NC machines. To reduce the machining cost of a sculptured surface, the machining time must be as short as possible. Table of Contents: Introduction / Analytical Representation of Scupltured Surfaces / Kinematics of Sculptured-Surface Machining / Analytical Description of the Geometry of Contact of the Sculptured Surface and of the Generating Surface of the Form-Cutting Tool / Form-Cutting Tools of Optimal Design / Conditions of Proper Sculptured-Surface Generation / Predicted Accuracy of the Machined Sculptured Surface / Optimal Sculptured-Surface Machining
Presents an in-depth analysis of geometry of part surfaces and provides the tools for solving complex engineering problems Geometry of Surfaces: A Practical Guide for Mechanical Engineers is a comprehensive guide to applied geometry of surfaces with focus on practical applications in various areas of mechanical engineering. The book is divided into three parts on Part Surfaces, Geometry of Contact of Part Surfaces and Mapping of the Contacting Part Surfaces. Geometry of Surfaces: A Practical Guide for Mechanical Engineers combines differential geometry and gearing theory and presents new developments in the elementary theory of enveloping surfaces. Written by a leading expert of the field, this book also provides the reader with the tools for solving complex engineering problems in the field of mechanical engineering. Presents an in-depth analysis of geometry of part surfaces Provides tools for solving complex engineering problems in the field of mechanical engineering Combines differential geometry and gearing theory Highlights new developments in the elementary theory of enveloping surfaces Essential reading for researchers and practitioners in mechanical, automotive and aerospace engineering industries; CAD developers; and graduate students in Mechanical Engineering.
The principle of Occam's razor loosely translates tothe simplest solution is often the best. The author of Kinematic Geometry of Surface Machining utilizes this reductionist philosophy to provide a solution to the highly inefficient process of machining sculptured parts on multi-axis NC machines. He has developed a method to quickly calcu
The market demand for skills, knowledge and adaptability have positioned robotics to be an important field in both engineering and science. One of the most highly visible applications of robotics has been the robotic automation of many industrial tasks in factories. In the future, a new era will come in which we will see a greater success for robotics in non-industrial environments. In order to anticipate a wider deployment of intelligent and autonomous robots for tasks such as manufacturing, healthcare, ent- tainment, search and rescue, surveillance, exploration, and security missions, it is essential to push the frontier of robotics into a new dimension, one in which motion and intelligence play equally important roles. The 2010 International Conference on Intelligent Robotics and Applications (ICIRA 2010) was held in Shanghai, China, November 10–12, 2010. The theme of the c- ference was “Robotics Harmonizing Life,” a theme that reflects the ever-growing interest in research, development and applications in the dynamic and exciting areas of intelligent robotics. These volumes of Springer’s Lecture Notes in Artificial Intel- gence and Lecture Notes in Computer Science contain 140 high-quality papers, which were selected at least for the papers in general sessions, with a 62% acceptance rate Traditionally, ICIRA 2010 holds a series of plenary talks, and we were fortunate to have two such keynote speakers who shared their expertise with us in diverse topic areas spanning the rang of intelligent robotics and application activities.
A commonly used practice in industry is the machining of sculptured part surfaces on a multiaxis numerical control (NC) machine. While this practice is vital, it is also a costly aspect of the surface generation process. After investing more than 40 years of research into the theory of part surface generation, the author of Generation of Surfaces: Kinematic Geometry of Surface Machining considers an approach that provides optimal machining while factoring in the lowest possible cost. This book presents the modern theory of part surface generation with a focus on kinematic geometry of part surface machining on a multiaxis (NC) machine, and introduces key methods for applying the DG/K-based approach to part surface generation. The DG/K approach is based on the results of research found in two main areas: differential geometry (DG) of surfaces, and kinematics (K) of rigid body in three-dimensional Euclidian space E3. It is an extremely powerful tool for solving a plurality of problems in mechanical/manufacturing engineering. The text is presented in three parts: the basics, the fundamentals, and applications of part surface generation. The first part of the book provides an analytical description of part surfaces, details the principal elements of the theory of multiparametric motion of a rigid body in E3 space, and defines applied coordinate systems. The second half introduces the theory of part surface generation, and includes an analytical description of contact geometry, while the final portion illustrates the potential development of highly effective part surface generation methods. The author illustrates the most complex features of the book with examples, explains all of the results of analysis mathematically, and uses just one set of input parameters—the design parameters of the part surface to be machined. The book considers practical applications for part surface machining and cutting tool design. Developed for use with computer-aided design (CAD) and computer-aided machining (CAM), this text is useful for anyone starting work on new software packages for sculptured part surface machining on a multiaxis NC machine.
1) Demonstrates the rigorous scientific theory behind optimal gear design, manufacture, and performance 2) Details cutting edge research on gear design since the previous edition, enabling engineers to cost effectively make efficient and sustainable gears 3) Discusses approximate gearing, along with algorithms for gear design and performance 4) Aids the reader in designing noiseless gears which feature the highest possible power density at the lowest possible manufacturing costs