Download Free C S M Introductory Algebra Book in PDF and EPUB Free Download. You can read online C S M Introductory Algebra and write the review.

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
This book provides a comprehensive introduction to Soergel bimodules. First introduced by Wolfgang Soergel in the early 1990s, they have since become a powerful tool in geometric representation theory. On the one hand, these bimodules are fairly elementary objects and explicit calculations are possible. On the other, they have deep connections to Lie theory and geometry. Taking these two aspects together, they offer a wonderful primer on geometric representation theory. In this book the reader is introduced to the theory through a series of lectures, which range from the basics, all the way to the latest frontiers of research. This book serves both as an introduction and as a reference guide to the theory of Soergel bimodules. Thus it is intended for anyone who wants to learn about this exciting field, from graduate students to experienced researchers.
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
Reprint of the original, first published in 1836.
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.