Download Free C Neural Networks And Fuzzy Logic Book in PDF and EPUB Free Download. You can read online C Neural Networks And Fuzzy Logic and write the review.

A practical reference that presents concise and comprehensive reports on the major activities in fuzzy logic and neural networks, with emphasis on the applications and systems of interest to computer engineers. Each of the 31 chapters focuses on the most important activity of a specific topic, and the chapters are organized into three parts: principles and algorithms; applications; and architectures and systems. The applications for fuzzy logic include home appliance design and manufacturing process; those for neural networks include radar, sonar, and speech signal processing, remote sensing, and electrical power systems. Annotation copyright by Book News, Inc., Portland, OR
Artificial neural networks can mimic the biological information-processing mechanism in - a very limited sense. Fuzzy logic provides a basis for representing uncertain and imprecise knowledge and forms a basis for human reasoning. Neural networks display genuine promise in solving problems, but a definitive theoretical basis does not yet exist for their design. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms integrates neural net, fuzzy system, and evolutionary computing in system design that enables its readers to handle complexity - offsetting the demerits of one paradigm by the merits of another. This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller. Remaining chapters discuss the application of expert systems, neural networks, fuzzy control, and evolutionary computing techniques in modern engineering systems. These specific applications include: direct frequency converters electro-hydraulic systems motor control toaster control speech recognition vehicle routing fault diagnosis Asynchronous Transfer Mode (ATM) communications networks telephones for hard-of-hearing people control of gas turbine aero-engines telecommunications systems design Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms covers the spectrum of applications - comprehensively demonstrating the advantages of fusion techniques in industrial applications.
Neural Networks and Fuzzy-Logic Control introduces a simple integrated environment for programming displays and report generation. It includes the only currently available software that permits combined simulation of multiple neural networks, fuzzy-logic controllers, and dynamic systems such as robots or physiological models. The enclosed educational version of DESIRE/NEUNET differs for the full system mainly in the size of its data area and includes a compiler, two screen editors, color graphics, and many ready-to-run examples. The software lets users or instructors add their own help screens and interactive menus. The version of DESIRE/NEUNET included here is for PCs, viz. 286/287, 386/387, 486DX, Pentium, P6, SX with math coprocessor.
Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.
Using an engineering and science perspective, it explores diverse neural network, fuzzy logic and genetic algorithm techniques plus developing applications best suited for each of the methods discussed. Sample results are described and judgment made as to how well each application worked. The book/disk set includes an object-oriented user interface along with the code for numerous programs.
Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.
Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspects of fuzzy, neural and evolutionary approaches with worked out examples, MATLAB® exercises and applications in each chapter Presents the synergies of technologies of computational intelligence such as evolutionary fuzzy neural fuzzy and evolutionary neural systems Considers real world problems in the domain of systems modelling, control and optimization Contains a foreword written by Lotfi Zadeh Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing is an ideal text for final year undergraduate, postgraduate and research students in electrical, control, computer, industrial and manufacturing engineering.
Fuzzy and Neuro-Fuzzy Systems in Medicineprovides a thorough review of state-of-the-art techniques and practices, defines and explains relevant problems, as well as provides solutions to these problems. After an introduction, the book progresses from one topic to another - with a linear development from fundamentals to applications.
There are many uncertainties in the real world. Fuzzy theory treats a kind of uncertainty called fuzziness, where it shows that the boundary of yes or no is ambiguous and appears in the meaning of words or is included in the subjunctives or recognition of human beings. Fuzzy theory is essential and is applicable to many systems -- from consumer products like washing machines or refrigerators to big systems like trains or subways. Recently, fuzzy theory has been a strong tool for combining new theories (called soft computing) such as genetic algorithms or neural networks to get knowledge from real data. This introductory book enables the reader to understand easily what fuzziness is and how one can apply fuzzy theory to real problems -- which explains why it was a best-seller in Japan.