Download Free Building Transformation Networks For Consistent Evolution Of Interrelated Models Book in PDF and EPUB Free Download. You can read online Building Transformation Networks For Consistent Evolution Of Interrelated Models and write the review.

Complex software systems are described with multiple artifacts, such as code, design diagrams and others. Ensuring their consistency is crucial and can be automated with transformations for pairs of artifacts. We investigate how developers can combine independently developed and reusable transformations to networks that preserve consistency between more than two artifacts. We identify synchronization, compatibility and orchestration as central challenges, and we develop approaches to solve them.
Developing variable systems faces many challenges. Dependencies between interrelated artifacts within a product variant, such as code or diagrams, across product variants and across their revisions quickly lead to inconsistencies during evolution. This work provides a unification of common concepts and operations for variability management, identifies variability-related inconsistencies and presents an approach for view-based consistency preservation of variable systems.
In this work, the authors analysed the co-dependency between models and analyses, particularly the structure and interdependence of artefacts and the feature-based decomposition and composition of model-based analyses. Their goal is to improve the maintainability of model-based analyses. They have investigated the co-dependency of Domain-specific Modelling Languages (DSMLs) and model-based analyses regarding evolvability, understandability, and reusability.
This work introduces architectural security analyses for detecting access violations and attack paths in software architectures. It integrates access control policies and vulnerabilities, often analyzed separately, into a unified approach using software architecture models. Contributions include metamodels for access control and vulnerabilities, scenario-based analysis, and two attack analyses. Evaluation demonstrates high accuracy in identifying issues for secure system development.
This cumulative habilitation thesis, proposes concepts for (i) modelling and analysing dependability based on architectural models of software-intensive systems early in development, (ii) decomposition and composition of modelling languages and analysis techniques to enable more flexibility in evolution, and (iii) bridging the divergent levels of abstraction between data of the operation phase, architectural models and source code of the development phase.
Although tremendous progress has been made in Artificial Intelligence (AI), it entails new challenges. The growing complexity of learning tasks requires more complex AI components, which increasingly exhibit unreliable behaviour. In this book, we present a model-driven approach to model architectural safeguards for AI components and analyse their effect on the overall system reliability.
Business processes and information systems evolve constantly and affect each other in non-trivial ways. Aligning security requirements between both is a challenging task. This work presents an automated approach to extract access control requirements from business processes with the purpose of transforming them into a) access permissions for role-based access control and b) architectural data flow constraints to identify violations of access control in enterprise application architectures.
Software vendors must consider confidentiality especially while creating software architectures because decisions made here are hard to change later. Our approach represents and analyzes data flows in software architectures. Systems specify data flows and confidentiality requirements specify limitations of data flows. Software architects use detected violations of these limitations to improve the system. We demonstrate how to integrate our approach into existing development processes.
Complex projects developed under the model-driven engineering paradigm nowadays often involve several interrelated models, which are automatically processed via a multitude of model operations. Modular and incremental construction and execution of such networks of models and model operations are required to accommodate efficient development with potentially large-scale models. The underlying problem is also called Global Model Management. In this report, we propose an approach to modular and incremental Global Model Management via an extension to the existing technique of Generalized Discrimination Networks (GDNs). In addition to further generalizing the notion of query operations employed in GDNs, we adapt the previously query-only mechanism to operations with side effects to integrate model transformation and model synchronization. We provide incremental algorithms for the execution of the resulting extended Generalized Discrimination Networks (eGDNs), as well as a prototypical implementation for a number of example eGDN operations. Based on this prototypical implementation, we experiment with an application scenario from the software development domain to empirically evaluate our approach with respect to scalability and conceptually demonstrate its applicability in a typical scenario. Initial results confirm that the presented approach can indeed be employed to realize efficient Global Model Management in the considered scenario.