Download Free Building Physics Lighting Book in PDF and EPUB Free Download. You can read online Building Physics Lighting and write the review.

Building Physics: Lighting, Seeing in the Artificial Environment deals with basic principles of lighting as used in architecture, in building maintenance, and in an artificial environment. The book starts with the process of how humans see; the interaction of the eye and mind; and the effects of fatigue, visual disorders, and age. The phenomena of light are then discussed — how light behaves and how it is measured. Light and light waves beyond the visible spectrum are explained scientifically as being part of the electromagnetic spectrum within the 400 to 760 nm ranges. The different light sources are identified as daylight and artificial lights, with many types of lamps under the latter. As regards artificial lighting, a lighting fitting has two functions: redistributes luminescence properly and provides a suitable receptacle for the lamp. The requirements when using artificial or natural light in an exterior or interior setting are enumerated. The book also explains the specifications of the amount of light and how this amount is calculated. Interior lighting, both from artificial and natural sources, is comprehensively discussed, including issues such as discomfort glare, reflected glare, design and aesthetics, lighting requirements in different kinds of buildings, and flammability properties. The text also tackles exterior lighting including decorative floodlights, lighting for tunnels and underpasses, and special problem areas. Architects, engineers, electricians, interior designers, lighting technicians, environmentalists, and readers with interest in home decor will find this book useful.
The book presents the theoretical background of building physics, dealing with the evaluation of physical phenomena related to heat transfer and energy use in buildings, water and water vapour transfer in building structures, daylighting and electric lighting of buildings, sound transmission in building structures and protection against noise, the occurrence and spread of fires in buildings and the thermal response of cities. It contains numerical and computational evaluation methods, numerous computational case studies and examples of experimental analyses. The book demonstrates that the considered physical processes affect the quality of living and working comfort in indoor and outdoor environment.
This text provides a broad view of the research performed in building physics at the start of the 21st century. The focus of this conference was on combined heat and mass flow in building components, performance-based design of building enclosures, energy use in buildings, sustainable construction, users' comfort and health, and the urban micro-climate.
Buildings influence people. They account for one third of energy consumption across the globe and represent an annual capital expenditure of 7%-10% of GNP in industrialized countries. Their lifetime operation costs can exceed capital investment. Building Engineering aims to make buildings more efficient, safe and economical. One branch of this discipline, Building Physics/Science, has gained prominence, with a heightened awareness of such phenomena as sick buildings, the energy crisis and sustainability, and considering the performance of buildings in terms of climatic loads and indoor conditions. The book reflects the advanced level and high quality of research which Building Engineering, and Building Physics/Science in particular, have reached at the beginning of the twenty-first century. It will be a valuable resource to: engineers, architects, building scientists, consultants on the building envelope, researchers and graduate students.
Note: New editions of this book have been published: the 2nd edition in 2012, the 3rd edition in 2017, and the 4th edition in September 2023. Bad experiences with construction quality, the energy crises of 1973 and 1979, complaints about 'sick buildings', thermal, acoustical, visual and olfactory discomfort, the move towards more sustainability, have all accelerated the development of a field, which until 35 years ago was hardly more than an academic exercise: building physics. Through the application of existing physical knowledge and the combination with information coming from other disciplines, the field helps to understand the physical performance of building parts, buildings and the built environment, and translates it into correct design and construction. This book is the result of thirty years teaching, research and consultancy activity of the author. The book discusses the theory behind the heat and mass transport in and through building components. Steady and non steady state heat conduction, heat convection and thermal radiation are discussed in depth, followed by typical building-related thermal concepts such as reference temperatures, surface film coefficients, the thermal transmissivity, the solar transmissivity, thermal bridging and the periodic thermal properties. Water vapour and water vapour flow and moisture flow in and through building materials and building components is analyzed in depth, mixed up with several engineering concepts which allow a first order analysis of phenomena such as the vapour balance, the mold, mildew and dust mites risk, surface condensation, sorption, capillary suction, rain absorption and drying. In a last section, heat and mass transfer are combined into one overall model staying closest to the real hygrothermal response of building components, as observed in field experiments. The book combines the theory of heat and mass transfer with typical building engineering applications. The line from theory to application is dressed in a correct and clear way. In the theory, oversimplification is avoided. This book is the result of thirty years teaching, research and consultancy activity of the author.
Bad experiences with construction quality, the energy crises of 1973 and 1979, complaints about "sick buildings", thermal, acoustical, visual and olfactory discomfort, the need for good air quality, the move towards more sustainability - all these have accelerated the development of a field that, for a long time, was hardly more than an academic exercise: building physics (in English speaking countries sometimes referred to as building science). The discipline embraces domains such as heat and mass transfer, building acoustics, lighting, indoor environmental quality and energy efficiency. In some countries, fire safety is also included. Through the application of physical knowledge and its combination with information coming from other disciplines, the field helps to understand the physical phenomena governing building parts, building envelope, whole buildings and built environment performance, although for the last the wording "urban physics" is used. Today, building physics has become a key player on the road to a performance based building design. The book deals with the description, analysis and modeling of heat, air and moisture transport in building assemblies and whole buildings with main emphasis on the building engineering applications, including examples. The physical transport processes determine the performance of the building envelope and may influence the serviceability of the structure and the whole building. Compared to the second edition, in this third edition the text has partially been revised and extended.