Download Free Building Performance Analysis Book in PDF and EPUB Free Download. You can read online Building Performance Analysis and write the review.

Explores and brings together the existent body of knowledge on building performance analysis Shortlisted in the CIBSE 2020 Building Performance Awards Building performance is an important yet surprisingly complex concept. This book presents a comprehensive and systematic overview of the subject. It provides a working definition of building performance, and an in-depth discussion of the role building performance plays throughout the building life cycle. The book also explores the perspectives of various stakeholders, the functions of buildings, performance requirements, performance quantification (both predicted and measured), criteria for success, and the challenges of using performance analysis in practice. Building Performance Analysis starts by introducing the subject of building performance: its key terms, definitions, history, and challenges. It then develops a theoretical foundation for the subject, explores the complexity of performance assessment, and the way that performance analysis impacts on actual buildings. In doing so, it attempts to answer the following questions: What is building performance? How can building performance be measured and analyzed? How does the analysis of building performance guide the improvement of buildings? And what can the building domain learn from the way performance is handled in other disciplines? Assembles the current body of knowledge on building performance analysis in one unique resource Offers deep insights into the complexity of using building performance analysis throughout the entire building life cycle, including design, operation and management Contributes an emergent theory of building performance and its analysis Building Performance Analysis will appeal to the building science community, both from industry and academia. It specifically targets advanced students in architectural engineering, building services design, building performance simulation and similar fields who hold an interest in ensuring that buildings meet the needs of their stakeholders.
The main aim of this book is to present an intriguing retrospective of Building Performance Evaluation (BPE) as it evolved from Post-Occupancy Evaluation (POE) over the past 25 years. On one hand, this is done by updating original authors' chapter content of Building Evaluation, the first edition published in 1989. That, in turn, is augmented by an orientation toward current and future practice on the other, including new authors who are engaged in ongoing, cutting edge projects. Therefore, individual, methodology oriented chapters covering the fundamental principles of POE and BPE go along with major thematic chapters, topics of which like sustainability or integration of new technologies are addressed in a diversity of case studies from around the globe. Research, methodologies, and framework of POEs continue to evolve. POEs are one step, on the larger scale of BPE, in understanding how buildings function after they are occupied. This resource helps a rchitects, building owners, and facility managers understand the implications and reactions to the facilities that they designed, built and/or commissioned. By considering the whole process from conception to future uses of the building, there can be a more holistic approach to the planning, programming, design, construction, occupancy, and future adaptability of the structure. This book is dedicated to first editor Wolfgang F. E. Preiser who passed away during the process of editing and reviewing chapters of this volume.
Building Performance Evaluation (BPE) informs and enhances the usability and sustainability of building designs with lessons learned from evaluation of building performance throughout the building life cycle, from initial planning through occupancy to adaptive re-use. A key feature of BPE is that it examines design and technical performance of buildings alongside human performance criteria. That is, it seeks to examine facilities in order to determine whether they will work for the people that will use and occupy them. Rigorous BPE helps to improve design practice by providing feedback on the effectiveness of the choices made about the building to ensure that its design is optimised for stakeholders’ uses. The overarching theme for Enhancing Building Performance is to present the next generation of BPE work. The book provides an updated systematic approach for BPE as well as chapters written by experts from around the world who demonstrate how to apply BPE to enhance building design. Topics covered include: evidence-based and integrative design processes, evaluation methods and tools, and education and knowledge transfer. In addition, case studies provide specific examples of how BPE has been used to study such things as the impact of workplace design on human productivity and innovation. Written primarily for design professionals and facility managers who wish to use BPE to deliver improved building performance that is responsive to the needs of stakeholders, Enhancing Building Performance will also be of great value to researchers and students across a range of architecture and construction disciplines.
This book charts the path toward high performance sustainable buildings and the smart dwellings of the future. The volume clearly explains the principles and practices of high performance design, the uses of building information modelling (BIM), and the materials and methods of smart construction. Power Systems, Architecture, Material Science, Civil Engineering and Information Systems are all given consideration, as interdisciplinary endeavours are at the heart of this green building revolution.
Effective building performance simulation can reduce the environmental impact of the built environment, improve indoor quality and productivity, and facilitate future innovation and technological progress in construction. It draws on many disciplines, including physics, mathematics, material science, biophysics and human behavioural, environmental and computational sciences. The discipline itself is continuously evolving and maturing, and improvements in model robustness and fidelity are constantly being made. This has sparked a new agenda focusing on the effectiveness of simulation in building life-cycle processes. Building Performance Simulation for Design and Operation begins with an introduction to the concepts of performance indicators and targets, followed by a discussion on the role of building simulation in performance-based building design and operation. This sets the ground for in-depth discussion of performance prediction for energy demand, indoor environmental quality (including thermal, visual, indoor air quality and moisture phenomena), HVAC and renewable system performance, urban level modelling, building operational optimization and automation. Produced in cooperation with the International Building Performance Simulation Association (IBPSA), and featuring contributions from fourteen internationally recognised experts in this field, this book provides a unique and comprehensive overview of building performance simulation for the complete building life-cycle from conception to demolition. It is primarily intended for advanced students in building services engineering, and in architectural, environmental or mechanical engineering; and will be useful for building and systems designers and operators.
The building performance evaluation (BPE) framework emphasizes an evaluative stance throughout the six phases of the building delivery and life cycle: (1) strategic planning/needs analysis; (2) program review; (3) design review; (4) post-construction evaluation/review; (5) post-occupancy evaluation; and, (6) facilities management review/adaptive reuse. The lessons learned from positive and negative building performance are fed into future building delivery cycles. The case studies illustrate how this basic methodology has been adapted to a range of cultural contexts, and indicates the positive results of building performance assessment in a wide range of situations.
The second edition of Building Energy Simulation includes studies of various components and systems of buildings and their effect on energy consumption, with the help of DesignBuilderTM, a front-end for the EnergyPlus simulation engine, supported by examples and exercises. The book employs a "learning by doing" methodology. It explains simulation-input parameters and how-to-do analysis of the simulation output, in the process explaining building physics and energy simulation. Divided into three sections, it covers the fundamentals of energy simulation followed by advanced topics in energy simulation and simulation for compliance with building codes and detailed case studies for comprehensive building energy simulation. Features: Focuses on learning building energy simulation while being interactive through examples and exercises. Explains the building physics and the science behind the energy performance of buildings. Encourages an integrated design approach by explaining the interactions between various building systems and their effect on energy performance of building. Discusses a how-to model for building energy code compliance including three projects to practice whole building simulation. Provides hands-on training of building energy simulation tools: DesignBuilderTM and EnergyPlus. Includes practical projects problems, appendices and CAD files in the e-resources section. Building Energy Simulation is intended for students and researchers in building energy courses, energy simulation professionals, and architects.
Based on the Symposium on Advances in Building Evaluation: Knowledge, methods, and Applications, held as part of the Tenth Biannual Conference of the International Association for the Study of People, and Their Physical Surroundings, July 5-8, 1988, in Delft, The Netherlands
This textbook teaches the fundamentals of building energy modeling and analysis using open source example applications built with the US DOE’s OpenStudio modeling platform and EnergyPlus simulation engine. Designed by researchers at US National Laboratories to support a new generation of high performance buildings, EnergyPlus and OpenStudio are revolutionizing how building energy modeling is taught in universities and applied by professional architects and engineers around the world. The authors, all researchers at National Renewable Energy Laboratory and members of the OpenStudio software development team, present modeling concepts using open source software that may be generally applied using a variety of software tools commonly used by design professionals. The book also discusses modeling process automation in the context of OpenStudio Measures—small self-contained scripts that can transform energy models and their data—to save time and effort. They illustrate key concepts through a sophisticated example problem that evolves in complexity throughout the book. The text also examines advanced topics including daylighting, parametric analysis, uncertainty analysis, design optimization, and model calibration. Building Energy Modeling with OpenStudio teaches students to become sophisticated modelers rather than simply proficient software users. It supports undergraduate and graduate building energy courses in Architecture, and in Mechanical, Civil, Architectural, and Sustainability Engineering.
Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.