Download Free Building Dialogue Pomdps From Expert Dialogues Book in PDF and EPUB Free Download. You can read online Building Dialogue Pomdps From Expert Dialogues and write the review.

This book discusses the Partially Observable Markov Decision Process (POMDP) framework applied in dialogue systems. It presents POMDP as a formal framework to represent uncertainty explicitly while supporting automated policy solving. The authors propose and implement an end-to-end learning approach for dialogue POMDP model components. Starting from scratch, they present the state, the transition model, the observation model and then finally the reward model from unannotated and noisy dialogues. These altogether form a significant set of contributions that can potentially inspire substantial further work. This concise manuscript is written in a simple language, full of illustrative examples, figures, and tables.
This monograph is the first survey of neural approaches to conversational AI that targets Natural Language Processing and Information Retrieval audiences. It provides a comprehensive survey of the neural approaches to conversational AI that have been developed in the last few years, covering QA, task-oriented and social bots with a unified view of optimal decision making.The authors draw connections between modern neural approaches and traditional approaches, allowing readers to better understand why and how the research has evolved and to shed light on how they can move forward. They also present state-of-the-art approaches to training dialogue agents using both supervised and reinforcement learning. Finally, the authors sketch out the landscape of conversational systems developed in the research community and released in industry, demonstrating via case studies the progress that has been made and the challenges that are still being faced.Neural Approaches to Conversational AI is a valuable resource for students, researchers, and software developers. It provides a unified view, as well as a detailed presentation of the important ideas and insights needed to understand and create modern dialogue agents that will be instrumental to making world knowledge and services accessible to millions of users in ways that seem natural and intuitive.
A chatbot is expected to be capable of supporting a cohesive and coherent conversation and be knowledgeable, which makes it one of the most complex intelligent systems being designed nowadays. Designers have to learn to combine intuitive, explainable language understanding and reasoning approaches with high-performance statistical and deep learning technologies. Today, there are two popular paradigms for chatbot construction: 1. Build a bot platform with universal NLP and ML capabilities so that a bot developer for a particular enterprise, not being an expert, can populate it with training data; 2. Accumulate a huge set of training dialogue data, feed it to a deep learning network and expect the trained chatbot to automatically learn “how to chat”. Although these two approaches are reported to imitate some intelligent dialogues, both of them are unsuitable for enterprise chatbots, being unreliable and too brittle. The latter approach is based on a belief that some learning miracle will happen and a chatbot will start functioning without a thorough feature and domain engineering by an expert and interpretable dialogue management algorithms. Enterprise high-performance chatbots with extensive domain knowledge require a mix of statistical, inductive, deep machine learning and learning from the web, syntactic, semantic and discourse NLP, ontology-based reasoning and a state machine to control a dialogue. This book will provide a comprehensive source of algorithms and architectures for building chatbots for various domains based on the recent trends in computational linguistics and machine learning. The foci of this book are applications of discourse analysis in text relevant assessment, dialogue management and content generation, which help to overcome the limitations of platform-based and data driven-based approaches. Supplementary material and code is available at https://github.com/bgalitsky/relevance-based-on-parse-trees
This book describes research in all aspects of the design, implementation, and evaluation of embodied conversational agents as well as details of specific working systems. Embodied conversational agents are computer-generated cartoonlike characters that demonstrate many of the same properties as humans in face-to-face conversation, including the ability to produce and respond to verbal and nonverbal communication. They constitute a type of (a) multimodal interface where the modalities are those natural to human conversation: speech, facial displays, hand gestures, and body stance; (b) software agent, insofar as they represent the computer in an interaction with a human or represent their human users in a computational environment (as avatars, for example); and (c) dialogue system where both verbal and nonverbal devices advance and regulate the dialogue between the user and the computer. With an embodied conversational agent, the visual dimension of interacting with an animated character on a screen plays an intrinsic role. Not just pretty pictures, the graphics display visual features of conversation in the same way that the face and hands do in face-to-face conversation among humans. This book describes research in all aspects of the design, implementation, and evaluation of embodied conversational agents as well as details of specific working systems. Many of the chapters are written by multidisciplinary teams of psychologists, linguists, computer scientists, artists, and researchers in interface design. The authors include Elisabeth Andre, Norm Badler, Gene Ball, Justine Cassell, Elizabeth Churchill, James Lester, Dominic Massaro, Cliff Nass, Sharon Oviatt, Isabella Poggi, Jeff Rickel, and Greg Sanders.
Spoken language understanding (SLU) is an emerging field in between speech and language processing, investigating human/ machine and human/ human communication by leveraging technologies from signal processing, pattern recognition, machine learning and artificial intelligence. SLU systems are designed to extract the meaning from speech utterances and its applications are vast, from voice search in mobile devices to meeting summarization, attracting interest from both commercial and academic sectors. Both human/machine and human/human communications can benefit from the application of SLU, using differing tasks and approaches to better understand and utilize such communications. This book covers the state-of-the-art approaches for the most popular SLU tasks with chapters written by well-known researchers in the respective fields. Key features include: Presents a fully integrated view of the two distinct disciplines of speech processing and language processing for SLU tasks. Defines what is possible today for SLU as an enabling technology for enterprise (e.g., customer care centers or company meetings), and consumer (e.g., entertainment, mobile, car, robot, or smart environments) applications and outlines the key research areas. Provides a unique source of distilled information on methods for computer modeling of semantic information in human/machine and human/human conversations. This book can be successfully used for graduate courses in electronics engineering, computer science or computational linguistics. Moreover, technologists interested in processing spoken communications will find it a useful source of collated information of the topic drawn from the two distinct disciplines of speech processing and language processing under the new area of SLU.
An examination of more than sixty years of successes and failures in developing technologies that allow computers to understand human spoken language. Stanley Kubrick's 1968 film 2001: A Space Odyssey famously featured HAL, a computer with the ability to hold lengthy conversations with his fellow space travelers. More than forty years later, we have advanced computer technology that Kubrick never imagined, but we do not have computers that talk and understand speech as HAL did. Is it a failure of our technology that we have not gotten much further than an automated voice that tells us to "say or press 1"? Or is there something fundamental in human language and speech that we do not yet understand deeply enough to be able to replicate in a computer? In The Voice in the Machine, Roberto Pieraccini examines six decades of work in science and technology to develop computers that can interact with humans using speech and the industry that has arisen around the quest for these technologies. He shows that although the computers today that understand speech may not have HAL's capacity for conversation, they have capabilities that make them usable in many applications today and are on a fast track of improvement and innovation. Pieraccini describes the evolution of speech recognition and speech understanding processes from waveform methods to artificial intelligence approaches to statistical learning and modeling of human speech based on a rigorous mathematical model--specifically, Hidden Markov Models (HMM). He details the development of dialog systems, the ability to produce speech, and the process of bringing talking machines to the market. Finally, he asks a question that only the future can answer: will we end up with HAL-like computers or something completely unexpected?
Future technical systems will be companion systems, competent assistants that provide their functionality in a completely individualized way, adapting to a user’s capabilities, preferences, requirements, and current needs, and taking into account both the emotional state and the situation of the individual user. This book presents the enabling technology for such systems. It introduces a variety of methods and techniques to implement an individualized, adaptive, flexible, and robust behavior for technical systems by means of cognitive processes, including perception, cognition, interaction, planning, and reasoning. The technological developments are complemented by empirical studies from psychological and neurobiological perspectives.
In this book, a novel approach that combines speech-based emotion recognition with adaptive human-computer dialogue modeling is described. With the robust recognition of emotions from speech signals as their goal, the authors analyze the effectiveness of using a plain emotion recognizer, a speech-emotion recognizer combining speech and emotion recognition, and multiple speech-emotion recognizers at the same time. The semi-stochastic dialogue model employed relates user emotion management to the corresponding dialogue interaction history and allows the device to adapt itself to the context, including altering the stylistic realization of its speech. This comprehensive volume begins by introducing spoken language dialogue systems and providing an overview of human emotions, theories, categorization and emotional speech. It moves on to cover the adaptive semi-stochastic dialogue model and the basic concepts of speech-emotion recognition. Finally, the authors show how speech-emotion recognizers can be optimized, and how an adaptive dialogue manager can be implemented. The book, with its novel methods to perform robust speech-based emotion recognition at low complexity, will be of interest to a variety of readers involved in human-computer interaction.
The essays in this book, written by researchers from both humanities and science, describe various theoretical and experimental approaches to adding medical ethics to a machine, what design features are necessary in order to achieve this, philosophical and practical questions concerning justice, rights, decision-making and responsibility in medical contexts, and accurately modeling essential physician-machine-patient relationships. In medical settings, machines are in close proximity with human beings: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old and with medical professionals. Machines in these contexts are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for empathy and emotion detection necessary? What about consciousness? This collection is the first book that addresses these 21st-century concerns.
"This book is a reference guide for researchers entering the promising field of conversational agents, providing an introduction to fundamental concepts in the field, collecting experiences of researchers working on conversational agents, and reviewing techniques for the design and application of conversational agents"--