Download Free Building An Advanced Climate Model Book in PDF and EPUB Free Download. You can read online Building An Advanced Climate Model and write the review.

Downscaling is a widely used technique for translating information from large-scale climate models to the spatial and temporal scales needed to assess local and regional climate impacts, vulnerability, risk and resilience. This book is a comprehensive guide to the downscaling techniques used for climate data. A general introduction of the science of climate modeling is followed by a discussion of techniques, models and methodologies used for producing downscaled projections, and the advantages, disadvantages and uncertainties of each. The book provides detailed information on dynamic and statistical downscaling techniques in non-technical language, as well as recommendations for selecting suitable downscaled datasets for different applications. The use of downscaled climate data in national and international assessments is also discussed using global examples. This is a practical guide for graduate students and researchers working on climate impacts and adaptation, as well as for policy makers and practitioners interested in climate risk and resilience.
As a consequence of recent increased awareness of the social and political dimensions of climate, many non-specialists discover a need for information about the variety of available climate models. A Climate Modelling Primer, Fourth Edition is designed to explain the basis and mechanisms of all types of current physically-based climate models. A thoroughly revised and updated edition, this book will assist the reader in understanding the complexities and applicabilities of today’s wide range of climate models. Topics covered include the latest techniques for modelling the coupled biosphere-ocean-atmosphere system, information on current practical aspects of climate modelling and ways to evaluate and exploit the results, discussion of Earth System Models of Intermediate Complexity (EMICs), and interactive exercises based on Energy Balance Model (EBM) and the Daisyworld model. Source codes and results from a range of model types allows readers to make their own climate simulations and to view the results of the latest high resolution models. Now in full colour throughout and with the addition of cartoons to enhance student understanding the new edition of this successful textbook enables the student to tackle the difficult subject of climate modeling.
NEW YORK TIMES BESTSELLER NATIONAL BESTSELLER In this urgent, singularly authoritative book, Bill Gates sets out a wide-ranging, practical--and accessible--plan for how the world can get to zero greenhouse gas emissions in time to avoid an irreversible climate catastrophe. Bill Gates has spent a decade investigating the causes and effects of climate change. With the help and guidance of experts in the fields of physics, chemistry, biology, engineering, political science and finance, he has focused on exactly what must be done in order to stop the planet's slide toward certain environmental disaster. In this book, he not only gathers together all the information we need to fully grasp how important it is that we work toward net-zero emissions of greenhouse gases but also details exactly what we need to do to achieve this profoundly important goal. He gives us a clear-eyed description of the challenges we face. He describes the areas in which technology is already helping to reduce emissions; where and how the current technology can be made to function more effectively; where breakthrough technologies are needed, and who is working on these essential innovations. Finally, he lays out a concrete plan for achieving the goal of zero emissions--suggesting not only policies that governments should adopt, but what we as individuals can do to keep our government, our employers and ourselves accountable in this crucial enterprise. As Bill Gates makes clear, achieving zero emissions will not be simple or easy to do, but by following the guidelines he sets out here, it is a goal firmly within our reach.
Climate Systems Modeling presents an interdisciplinary and comprehensive study of the dynamics of the whole global system. As a comprehensive text it will appeal to students and researchers concerned with any aspect of climatology and the study of related topics in the broad earth and environmental sciences.
Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices
Climate change mechanisms, impacts, risks, mitigation, adaption, and governance are widely recognized as the biggest, most interconnected problem facing humanity. Big Data Mining for Climate Change addresses one of the fundamental issues facing scientists of climate or the environment: how to manage the vast amount of information available and analyse it. The resulting integrated and interdisciplinary big data mining approaches are emerging, partially with the help of the United Nation's big data climate challenge, some of which are recommended widely as new approaches for climate change research. Big Data Mining for Climate Change delivers a rich understanding of climate-related big data techniques and highlights how to navigate huge amount of climate data and resources available using big data applications. It guides future directions and will boom big-data-driven researches on modeling, diagnosing and predicting climate change and mitigating related impacts. This book mainly focuses on climate network models, deep learning techniques for climate dynamics, automated feature extraction of climate variability, and sparsification of big climate data. It also includes a revelatory exploration of big-data-driven low-carbon economy and management. Its content provides cutting-edge knowledge for scientists and advanced students studying climate change from various disciplines, including atmospheric, oceanic and environmental sciences; geography, ecology, energy, economics, management, engineering, and public policy.
Syukuro Manabe is perhaps the leading pioneer of modern climate modeling. Beyond Global Warming is his compelling firsthand account of how the scientific community came to understand the human causes of climate change, and how numerical models using the world's most powerful computers have been instrumental to these vital discoveries. Joined here by atmospheric scientist Anthony Broccoli, Manabe shows how climate models have been used as virtual laboratories for examining the complex planetary interactions of atmosphere, ocean, and land. Manabe and Broccoli use these studies as the basis for a broader discussion of human-induced global warming--and what the future may hold for a warming planet. They tell the stories of early trailblazers such as Svante Arrhenius, the legendary Swedish scientist who created the first climate model of Earth more than a century ago, and provide rare insights into Manabe's own groundbreaking work over the past five decades. Expertly walking readers through key breakthroughs, they explain why increasing atmospheric carbon dioxide has caused temperatures to rise in the troposphere yet fall in the stratosphere, why the warming of the planet's surface differs by hemisphere, why drought is becoming more frequent in arid regions despite the global increase in precipitation, and much more.