Download Free Brief Calculus Its Applications Book in PDF and EPUB Free Download. You can read online Brief Calculus Its Applications and write the review.

Calculus & Its Applications builds intuition with key concepts of calculus before the analytical material. For example, the authors explain the derivative geometrically before they present limits, and they introduce the definite integral intuitively via the notion of net change before they discuss Riemann sums. The strategic organisation of topics makes it easy to adjust the level of theoretical material covered. The significant applications introduced early in the course serve to motivate students and make the mathematics more accessible. Another unique aspect of the text is its intuitive use of differential equations to model a variety of phenomena in Chapter 5, which addresses applications of exponential and logarithmic functions. The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
Calculus is an extremely powerful tool for solving a host of practical problems in fields as diverse as physics, biology, and economics, to mention just a few. In this rigorous but accessible text, a noted mathematician introduces undergraduate-level students to the problem-solving techniques that make a working knowledge of calculus indispensable for any mathematician. The author first applies the necessary mathematical background, including sets, inequalities, absolute value, mathematical induction, and other "precalculus" material. Chapter Two begins the actual study of differential calculus with a discussion of the key concept of function, and a thorough treatment of derivatives and limits. In Chapter Three differentiation is used as a tool; among the topics covered here are velocity, continuous and differentiable functions, the indefinite integral, local extrema, and concrete optimization problems. Chapter Four treats integral calculus, employing the standard definition of the Riemann integral, and deals with the mean value theorem for integrals, the main techniques of integration, and improper integrals. Chapter Five offers a brief introduction to differential equations and their applications, including problems of growth, decay, and motion. The final chapter is devoted to the differential calculus of functions of several variables. Numerous problems and answers, and a newly added section of "Supplementary Hints and Answers," enable the student to test his grasp of the material before going on. Concise and well written, this text is ideal as a primary text or as a refresher for anyone wishing to review the fundamentals of this crucial discipline.
The Malliavin calculus was developed to provide a probabilistic proof of Hormander's hypoellipticity theorem. The theory has expanded to encompass other significant applications. The main application of the Malliavin calculus is to establish the regularity of the probability distribution of functionals of an underlying Gaussian process. In this way, one can prove the existence and smoothness of the density for solutions of various stochastic differential equations. More recently, applications of the Malliavin calculus in areas such as stochastic calculus for fractional Brownian motion, central limit theorems for multiple stochastic integrals, and mathematical finance have emerged. The first part of the book covers the basic results of the Malliavin calculus. The middle part establishes the existence and smoothness results that then lead to the proof of Hormander's hypoellipticity theorem. The last part discusses the recent developments for Brownian motion, central limit theorems, and mathematical finance.
This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.
Calculus and its Applications provides information pertinent to the applications of calculus. This book presents the trapping technique in defining geometrical and physical entities that are usually regarded as limits of sums. Organized into 20 chapters, this book begins with an overview of the notion of average speed that seems to appear first as a qualitative concept. This text then presents the concepts of external and internal parameters to increase the appreciation of parametric functions. Other chapters consider separable differential equations with more detail than usual with their suitability in describing physical laws. This book discusses as well the study of variable quantities whose magnitude is determined by the magnitudes of several other variables. The final chapter deals with a homogeneous differential equation and auxiliary equations consisting imaginary roots. This book is a valuable resource for mathematicians and students. Readers whose interests span a variety of fields will also find this book useful.
This book, modern in its writing style as well as in its applications, contains numerous exercises--both skill oriented and applications--, real data problems, and a problem solving method.The book features exercises based on data form the World Wide Web, technology options for those who wish to use a graphing calculator, review boxes, strategic checkpoints, interactive activities, section summaries and projects, and chapter openers and reviews.For anyone who wants to see and understand how mathematics are used in everyday life.
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to work with stochastic calculus as well as with its applications."–Zentralblatt (from review of the First Edition)
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.