Download Free Breeding For Robustness In Cattle Book in PDF and EPUB Free Download. You can read online Breeding For Robustness In Cattle and write the review.

The past decade has revealed unfavourable trends in e.g. fertility, udder health and locomotion in some major dairy cattle breeds due to a large increase in production and insufficient consideration of functional traits in the breeding goals. Such unfavourable trends in some functional traits increase costs. Additionally, the enlargement of herds leads to less available labour time per individual cow. This asks for cows that are easy to handle. At the same time, society is demanding a higher welfare standard of animals. These contradicting developments have increased the desire for so called more robust animals. Robustness can be defined as 'the ability to maintain homeostasis in commonly accepted and sustainable herds of the near future'; or 'the ability of the cow to function well in the environment she lives in as well as in a wide range of climates and production systems'. This book contains a series of articles (26) dealing with the concept of robustness, including aspects like evolution, genetics, environment, animal health and welfare, and integrity. Besides the major functional traits also the links to energy balance, hot climatic conditions, and the attitude and input of stakeholders towards robustness as part of the breeding program are discussed. This book is the first attempt to summarise the available knowledge concerning this topic in cattle, making this book unique. The contributions are from authors of 16 countries from all over the world. However, the focus is presently on farm animal level, while in future robustness of the whole production system may also require additional attention.
The past decade has revealed unfavourable trends in e.g. fertility, udder health and locomotion in some major dairy cattle breeds due to a large increase in production and insufficient consideration of functional traits in the breeding goals. Such unfavourable trends in some functional traits increase costs. Additionally, the enlargement of herds leads to less available labour time per individual cow. This asks for cows that are easy to handle. At the same time, society is demanding a higher welfare standard of animals. These contradicting developments have increased the desire for so called more robust animals. Robustness can be defined as 'the ability to maintain homeostasis in commonly accepted and sustainable herds of the near future'; or 'the ability of the cow to function well in the environment she lives in as well as in a wide range of climates and production systems'. This book contains a series of articles (26) dealing with the concept of robustness, including aspects like evolution, genetics, environment, animal health and welfare, and integrity. Besides the major functional traits also the links to energy balance, hot climatic conditions, and the attitude and input of stakeholders towards robustness as part of the breeding program are discussed. This book is the first attempt to summarise the available knowledge concerning this topic in cattle, making this book unique. The contributions are from authors of 16 countries from all over the world. However, the focus is presently on farm animal level, while in future robustness of the whole production system may also require additional attention.
This book is about resource allocation matters with the aim to further development thoughts and models on resource allocation applied to livestock production. It contains 18 chapters divided into 4 parts which discuss resources and resource allocation patterns, trade-offs, metabolic constraints to resource allocation and the process of homeorhesis with a special emphasis to homeorhesis during heat stress; the relationship between food intake and resources allocated to body maintenance, growth, reproduction and the immune response; the consequences of high production efficiency in pigs, poultry and dairy cattle and the consequences of improved production by means of biological engineering and options to include resource allocation matters in the breeding objective, animal welfare and in resource allocation modelling.
Gathering some 90 entries from the Encyclopedia of Sustainability Science and Technology, this book covers animal breeding and genetics for food, crop science and technology, ocean farming and sustainable aquaculture, transgenic livestock for food and more.
The determination of when, how, how often and with whom an animal breeds is moving rapidly away from evolutionary pressures and towards human purposes: these include the breeding of around 50 billion mammals and birds for food production annually, the breeding of pedigree dogs and cats, racing dogs and horses, specialised laboratory animal strains and the use of reproductive science to conserve endangered species or breeds and to limit unwanted populations of pests and non-native species. But the ethics and sustainability of this takeover of animals' reproductive lives have been insufficiently examined by either professionals or the public. This book discusses the methods, the motivations and the consequences of human intervention in animal breeding in terms of animal health, behaviour and well-being. It explores where we are now and the choices ahead, and looks to a future where we have more respect for animals as sentient beings and where we could loosen the reins of reproductive control.
Addressing principles associated with breeding animals for enhanced health and resistance to specific diseases, this book provides a review of the field illustrated with examples covering many diseases of importance to livestock production, across all major livestock species. Authored by experts in the field, this updated edition covers techniques and approaches, viruses, TSEs, bacteria, parasites, vectors, and broader health issues seen in production systems, including metabolic diseases. The book will be an essential reference for professionals in the field, scientists and researchers, students, breeders, veterinarians, agricultural advisors and policy makers.
Worldwide, mastitis is still one of the most important diseases in the dairy sector. Being a multifactorial disease, caused by multiple pathogens, control remains a difficult issue. Mastitis not only affects the health of milk-producing animals, having consequences for the profitability of dairy farms, it also affects the animal welfare. Moreover, mastitis negatively influences the milk quality having consequences for the dairy processing industry. In other words: mastitis affects a large part of the dairy production chain. Due to ongoing scientific effort, insight in mastitis in the context of increasingly complex farming systems, is improving. This insight leads to better methods to control mastitis, either by prevention or by adequate measures (e.g. therapy) when a cow (or goat or sheep) gets mastitis. This book reflects the current knowledge from all over the world on mastitis as it was presented during the 4th IDF International Mastitis Conference, held in June 2005 in Maastricht, the Netherlands. The papers of the 115 oral presentations and the 13 keynote presentations are reflecting not only the current knowledge of mastitis control but are also giving ideas for future solutions for control measures.
Fitness and adaptation are fundamental characteristics of plant and animal species, enabling them to survive in their environment and to adapt to the inevitable changes in this environment. This is true for both the genetic resources of natural ecosystems as well as those used in agricultural production. Extensive genetic variation exists between varieties/breeds in a species and amongst individuals within breeds. This variation has developed over very long periods of time. A major ongoing challenge is how to best utilize this variation to meet short-term demands whilst also conserving it for longer-term possible use. Many animal breeding programs have led to increased performance for production traits but this has often been accompanied by reduced fitness. In addition, the global use of genetic resources prompts the question whether introduced genotypes are adapted to local production systems. Understanding the genetic nature of fitness and adaptation will enable us to better manage genetic resources allowing us to make efficient and sustainable decisions for the improvement or breeding of these resources. This book had an ambitious goal in bringing together a sample of the world’s leading scientists in animal breeding and evolutionary genetics to exchange knowledge to advance our understanding of these vital issues.
In a changing climate, livestock production is expected to exhibit dual roles of mitigation and adaptation in order to meet the challenge of food security. This book approaches the issues of livestock production and climate change through three sections: I. Livestock production, II. Climate change and, III. Enteric methane amelioration. Section I addresses issues of feed quality and availability, abiotic stress (heat and nutritional) and strategies for alleviation, livestock generated nitrogen and phosphorus pollution, and approaches for harnessing the complex gut microbial diversity. Section II discusses the effects of climate change on livestock diversity, farm animal reproduction, impact of meat production on climate change, and emphasising the role of indigenous livestock in climatic change to sustain production. Section III deals with the most recent approaches to amelioration of livestock methane such as breeding for low methane emissions, reductive acetogenesis, immunization/vaccine-based concepts and archaea phage therapy.