Download Free Breakthrough To Math Book in PDF and EPUB Free Download. You can read online Breakthrough To Math and write the review.

Richard Elwes is a writer, teacher and researcher in Mathematics, visiting fellow at the University of Leeds, and contributor to numerous popular science magazines. He is a committed and recognized popularizer of mathematics. Of Elwes, Sonder Books 2011 Standouts said, "Dr. Elwes is brilliant at giving the reader the broad perspective, with enough details to fascinate, rather than confuse." Math in 100 Key Breakthroughs offers a series of short, clear-eyed essays explaining the fundamentals of the mathematical concepts everyone should know. Professor Richard Elwes profiles the most important, groundbreaking, and astonishing discoveries, which together have profoundly influenced our understanding of the universe. From the origins of counting--traced back to more than 35,000 years ago--to such contemporary breakthroughs as Wiles' Proof of Fermat's Last Theorem and Cook & Woolfram's Rule 110, this compulsively readable book tells the story of discovery, invention, and inspiration that have led to humankind's most important mathematical achievements.
From early humans carving notches in bones to the discovery of quantum mechanics and chaos theory - mathematics has certainly come a long way. Fully illustrated and augmented with helpful timelines and diagrams, Problem Solved! explores some of history's greatest mathematical breakthroughs. Covering topics from Ancient Egyptian geometry to chaos theory, readers will learn about Euclid of Alexandria, Brahmagupta, Sir Isaac Newton, Alan Turing and more. Whether solving practical or abstract problems, these mathematicians have each sought to improve our lives, and have bought us to the world we know today. With each concept explained in easy-to-understand language, there's no need to be a calculus genius to marvel at these incredible feats of problem-solving brilliance.
In 2006, an eccentric Russian mathematician named Grigori Perelman solved one of the world's greatest intellectual puzzles. The Poincare conjecture is an extremely complex topological problem that had eluded the best minds for over a century. In 2000, the Clay Institute in Boston named it one of seven great unsolved mathematical problems, and promised a million dollars to anyone who could find a solution. Perelman was awarded the prize this year - and declined the money. Journalist Masha Gessen was determined to find out why. Drawing on interviews with Perelman's teachers, classmates, coaches, teammates, and colleagues in Russia and the US - and informed by her own background as a math whiz raised in Russia - she set out to uncover the nature of Perelman's astonishing abilities. In telling his story, Masha Gessen has constructed a gripping and tragic tale that sheds rare light on the unique burden of genius.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
Workbook to assist instructors with teaching basic numeration.
A delightful tour of the greatest ideas of math, showing how math intersects with philosophy, science, art, business, current events, and everyday life, by an acclaimed science communicator and regular contributor to the "New York Times."
This book is of interest to mathematicians and computer scientists working in finite mathematics and combinatorics. It presents a breakthrough method for analyzing complex summations. Beautifully written, the book contains practical applications as well as conceptual developments that will have applications in other areas of mathematics.From the ta