Download Free Brain Networks Reorganization During Maturation And Healthy Aging Emphases For Resilience Book in PDF and EPUB Free Download. You can read online Brain Networks Reorganization During Maturation And Healthy Aging Emphases For Resilience and write the review.

Old adults undertake multiple reduced cognitive abilities in aging, which are accompanied with specific brain reorganization in forms of regional brain activity and brain tissues, inter-region connectivity, and topology of whole brain networks in both function and structure. The plasticity changes of brain activities in old adults are explained by the mechanisms of compensation and dedifferentiation. For example, older adults have been observed to have greater, usually bilateral, prefrontal activities during memory tasks compared to the typical unilateral prefrontal activities in younger adults, which was explained as a compensation for the reduced brain activities in visual processing cortices. Dedifferentiation is another mechanism to explain that old adults are with much less selective and less distinct activity in task-relevant brain regions compared with younger adults. A larger number of studies have examined the plasticity changes of brain from the perspective of regional brain activities. However, studies on only regional brain activities cannot fully elucidate the neural mechanisms of reduced cognitive abilities in aging, as multiple regions are integrated together to achieve advanced cognitive function in human brain. In recent years, brain connectivity/network, which targets how brain regions are integrated, have drawn increasing attention in neuroscience with the development of neuroimaging techniques and graph theoretical analysis. Connectivity quantifies functional association or neural fibers between two regions that may be spatially far separated, and graph theoretical analysis of brain network examines the complex interactions among multiple regions from the perspective of topology. Studies showed that compared to younger adults, older adults had altered strength of task-relevant functional connectivity between specific brain regions in cognitive tasks, and the alternation of connectivity are correlated to behavior performance. For example, older adults had weaker functional connectivity between the premotor cortex and a region in the left dorsolateral prefrontal cortex in a working memory task. Interventions like cognitive training and neuro-modulation (e.g., transcranial magnetic stimulation) have been shown to be promising in regaining or retaining the decreasing cognitive abilities in aging. However, only few neuroimaging studies have examined the influence of interventions to old adult’s brain activity, connectivity, and cognitive performance. This Research Topic calls for contributions on brain network of subjects in normal aging or with age-related diseases like mild cognitive impairment and Alzheimer’s disease. The studies are expected to be based on neuroimaging techniques including but not limited to functional magnetic resonance imaging, Electroencephalography, and diffusion tensor imaging, and contributions on the influence of interventions to brain networks in aging are highly encouraged. All these studies would enrich our understanding of neural mechanisms underlying aging, and offer new insights for developing possible interventions to retain cognitive abilities in aging subjects.
Old adults undertake multiple reduced cognitive abilities in aging, which are accompanied with specific brain reorganization in forms of regional brain activity and brain tissues, inter-region connectivity, and topology of whole brain networks in both function and structure. The plasticity changes of brain activities in old adults are explained by the mechanisms of compensation and dedifferentiation. For example, older adults have been observed to have greater, usually bilateral, prefrontal activities during memory tasks compared to the typical unilateral prefrontal activities in younger adults, which was explained as a compensation for the reduced brain activities in visual processing cortices. Dedifferentiation is another mechanism to explain that old adults are with much less selective and less distinct activity in task-relevant brain regions compared with younger adults. A larger number of studies have examined the plasticity changes of brain from the perspective of regional brain activities. However, studies on only regional brain activities cannot fully elucidate the neural mechanisms of reduced cognitive abilities in aging, as multiple regions are integrated together to achieve advanced cognitive function in human brain. In recent years, brain connectivity/network, which targets how brain regions are integrated, have drawn increasing attention in neuroscience with the development of neuroimaging techniques and graph theoretical analysis. Connectivity quantifies functional association or neural fibers between two regions that may be spatially far separated, and graph theoretical analysis of brain network examines the complex interactions among multiple regions from the perspective of topology. Studies showed that compared to younger adults, older adults had altered strength of task-relevant functional connectivity between specific brain regions in cognitive tasks, and the alternation of connectivity are correlated to behavior performance. For example, older adults had weaker functional connectivity between the premotor cortex and a region in the left dorsolateral prefrontal cortex in a working memory task. Interventions like cognitive training and neuro-modulation (e.g., transcranial magnetic stimulation) have been shown to be promising in regaining or retaining the decreasing cognitive abilities in aging. However, only few neuroimaging studies have examined the influence of interventions to old adult's brain activity, connectivity, and cognitive performance. This Research Topic calls for contributions on brain network of subjects in normal aging or with age-related diseases like mild cognitive impairment and Alzheimer's disease. The studies are expected to be based on neuroimaging techniques including but not limited to functional magnetic resonance imaging, Electroencephalography, and diffusion tensor imaging, and contributions on the influence of interventions to brain networks in aging are highly encouraged. All these studies would enrich our understanding of neural mechanisms underlying aging, and offer new insights for developing possible interventions to retain cognitive abilities in aging subjects.
The Handbook of the Psychology of Aging, Seventh Edition, provides a basic reference source on the behavioral processes of aging for researchers, graduate students, and professionals. It also provides perspectives on the behavioral science of aging for researchers and professionals from other disciplines. The book is organized into four parts. Part 1 reviews key methodological and analytical issues in aging research. It examines some of the major historical influences that might provide explanatory mechanisms for a better understanding of cohort and period differences in psychological aging processes. Part 2 includes chapters that discuss the basics and nuances of executive function; the history of the morphometric research on normal brain aging; and the neural changes that occur in the brain with aging. Part 3 deals with the social and health aspects of aging. It covers the beliefs that individuals have about how much they can control various outcomes in their life; the impact of stress on health and aging; and the interrelationships between health disparities, social class, and aging. Part 4 discusses the emotional aspects of aging; family caregiving; and mental disorders and legal capacities in older adults. - Contains all the main areas of psychological gerontological research in one volume - Entire section on neuroscience and aging - Begins with a section on theory and methods - Edited by one of the father of gerontology (Schaie) and contributors represent top scholars in gerontology
Finalist in the 2020 PROSE Awards This multidisciplinary volume examines the neural mechanisms underlying changes in the aging brain, changes in learning and memory, risk and protective factors, and the assessment and prevention of cognitive decline.
Children are already learning at birth, and they develop and learn at a rapid pace in their early years. This provides a critical foundation for lifelong progress, and the adults who provide for the care and the education of young children bear a great responsibility for their health, development, and learning. Despite the fact that they share the same objective - to nurture young children and secure their future success - the various practitioners who contribute to the care and the education of children from birth through age 8 are not acknowledged as a workforce unified by the common knowledge and competencies needed to do their jobs well. Transforming the Workforce for Children Birth Through Age 8 explores the science of child development, particularly looking at implications for the professionals who work with children. This report examines the current capacities and practices of the workforce, the settings in which they work, the policies and infrastructure that set qualifications and provide professional learning, and the government agencies and other funders who support and oversee these systems. This book then makes recommendations to improve the quality of professional practice and the practice environment for care and education professionals. These detailed recommendations create a blueprint for action that builds on a unifying foundation of child development and early learning, shared knowledge and competencies for care and education professionals, and principles for effective professional learning. Young children thrive and learn best when they have secure, positive relationships with adults who are knowledgeable about how to support their development and learning and are responsive to their individual progress. Transforming the Workforce for Children Birth Through Age 8 offers guidance on system changes to improve the quality of professional practice, specific actions to improve professional learning systems and workforce development, and research to continue to build the knowledge base in ways that will directly advance and inform future actions. The recommendations of this book provide an opportunity to improve the quality of the care and the education that children receive, and ultimately improve outcomes for children.
Children are the foundation of the United States, and supporting them is a key component of building a successful future. However, millions of children face health inequities that compromise their development, well-being, and long-term outcomes, despite substantial scientific evidence about how those adversities contribute to poor health. Advancements in neurobiological and socio-behavioral science show that critical biological systems develop in the prenatal through early childhood periods, and neurobiological development is extremely responsive to environmental influences during these stages. Consequently, social, economic, cultural, and environmental factors significantly affect a child's health ecosystem and ability to thrive throughout adulthood. Vibrant and Healthy Kids: Aligning Science, Practice, and Policy to Advance Health Equity builds upon and updates research from Communities in Action: Pathways to Health Equity (2017) and From Neurons to Neighborhoods: The Science of Early Childhood Development (2000). This report provides a brief overview of stressors that affect childhood development and health, a framework for applying current brain and development science to the real world, a roadmap for implementing tailored interventions, and recommendations about improving systems to better align with our understanding of the significant impact of health equity.