Download Free Boundary Integral Equations On Contours With Peaks Book in PDF and EPUB Free Download. You can read online Boundary Integral Equations On Contours With Peaks and write the review.

This book is a comprehensive exposition of the theory of boundary integral equations for single and double layer potentials on curves with exterior and interior cusps. Three chapters cover harmonic potentials, and the final chapter treats elastic potentials.
Boundary element methods relate to a wide range of engineering applications, including fluid flow, fracture analysis, geomechanics, elasticity, and heat transfer. Thus, new results in the field hold great importance not only to researchers in mathematics, but to applied mathematicians, physicists, and engineers. A two-day minisymposium Mathematical Aspects of Boundary Element Methods at the IABEM conference in May 1998 brought together top rate researchers from around the world, including Vladimir Maz’ya, to whom the conference was dedicated. Focusing on the mathematical and numerical analysis of boundary integral operators, this volume presents 25 papers contributed to the symposium. Mathematical Aspects of Boundary Element Methods provides up-to-date research results from the point of view of both mathematics and engineering. The authors detail new results, such as on nonsmooth boundaries, and new methods, including domain decomposition and parallelization, preconditioned iterative techniques, multipole expansions, higher order boundary elements, and approximate approximations. Together they illustrate the connections between the modeling of applied problems, the derivation and analysis of corresponding boundary integral equations, and their efficient numerical solutions.
This is the first volume of a collection of articles dedicated to V.G Maz'ya on the occasion of his 60th birthday. It contains surveys on his work in different fields of mathematics or on areas to which he made essential contributions. Other articles of this book have their origin in the common work with Maz'ya. V.G Maz'ya is author or co-author of more than 300 scientific works on various fields of functional analysis, function theory, numerical analysis, partial differential equations and their application. The reviews in this book show his enormous productivity and the large variety of his work. The scond volume contains most of the invited lectures of the Conference on Functional Analysis, Partial Differential Equations and Applications held in Rostock in September 1998 in honor of V.G Maz'ya. Here different problems of functional analysis, potential theory, linear and nonlinear partial differential equations, theory of function spaces and numerical analysis are treated. The authors, who are outstanding experts in these fields, present surveys as well as new results.
This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems – as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis – will find this text to be a valuable addition to the mathematical literature.
Proceedings of the IABEM Symposium held in Pontignano, Italy, May 28-June 3, 1995
This volume is dedicated to Professor Stefan Samko on the occasion of his seventieth birthday. The contributions display the range of his scientific interests in harmonic analysis and operator theory. Particular attention is paid to fractional integrals and derivatives, singular, hypersingular and potential operators in variable exponent spaces, pseudodifferential operators in various modern function and distribution spaces, as well as related applications, to mention but a few. Most contributions were firstly presented in two conferences at Lisbon and Aveiro, Portugal, in June‒July 2011.
This book is devoted to the analysis of the basic boundary value problems for the Laplace equation in singularly perturbed domains. The main purpose is to illustrate a method called Functional Analytic Approach, to describe the dependence of the solutions upon a singular perturbation parameter in terms of analytic functions. Here the focus is on domains with small holes and the perturbation parameter is the size of the holes. The book is the first introduction to the topic and covers the theoretical material and its applications to a series of problems that range from simple illustrative examples to more involved research results. The Functional Analytic Approach makes constant use of the integral representation method for the solutions of boundary value problems, of Potential Theory, of the Theory of Analytic Functions both in finite and infinite dimension, and of Nonlinear Functional Analysis. Designed to serve various purposes and readerships, the extensive introductory part spanning Chapters 1–7 can be used as a reference textbook for graduate courses on classical Potential Theory and its applications to boundary value problems. The early chapters also contain results that are rarely presented in the literature and may also, therefore, attract the interest of more expert readers. The exposition moves on to introduce the Functional Analytic Approach. A reader looking for a quick introduction to the method can find simple illustrative examples specifically designed for this purpose. More expert readers will find a comprehensive presentation of the Functional Analytic Approach, which allows a comparison between the approach of the book and the more classical expansion methods of Asymptotic Analysis and offers insights on the specific features of the approach and its applications to linear and nonlinear boundary value problems.
This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrödinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya.
Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
This volume, dedicated to Bernd Silbermann on his sixtieth birthday, collects research articles on Toeplitz matrices and singular integral equations written by leading area experts. The subjects of the contributions include Banach algebraic methods, Toeplitz determinants and random matrix theory, Fredholm theory and numerical analysis for singular integral equations, and efficient algorithms for linear systems with structured matrices, and reflect Bernd Silbermann's broad spectrum of research interests. The volume also contains a biographical essay and a list of publications. The book is addressed to a wide audience in the mathematical and engineering sciences. The articles are carefully written and are accessible to motivated readers with basic knowledge in functional analysis and operator theory.