Download Free Boundaries And Interfaces In Materials Book in PDF and EPUB Free Download. You can read online Boundaries And Interfaces In Materials and write the review.

An accessible yet rigorous discussion, featuring case studies and study problems to illustrate and reinforce key concepts.
This book summarizes the most recent aspects of polycrystalline semiconductors as presented at the conference Polycrystalline Semiconductors - Grain Boundaries and Interfaces. It contains 12 review articles on selected topics written by experts in their fields and 41 complementary contributed papers. The structure, chemistry and physics of grain boundaries and other interfaces are experimentally and theoretically studied. Aspects of the technologically important polycrystalline silicon are discussed in detail. Also covered are other polycrystalline semiconductors, germanium and compound semiconductors, that are currently of interest in fundamental research and in the technology of solar cells and thin film devices. Anyone interested in polycrystalline semiconductors will be able to use this comprehensive collection to advantage. It also suggests directions for new research and development.
Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.
Grain boundaries are a main feature of crystalline materials. They play a key role in determining the properties of materials, especially when grain size decreases and even more so with the current improvements of processing tools and methods that allow us to control various elements in a polycrystal. This book presents the theoretical basis of the study of grain boundaries and aims to open up new lines of research in this area. The treatment is light on mathematical approaches while emphasizing practical examples; the issues they raise are discussed with reference to theories. The general approach of the book has two main goals: to lead the reader from the concept of ‘ideal’ to ‘real’ grain boundaries; to depart from established knowledge and address the opportunities emerging through "grain boundary engineering", the control of morphological and crystallographic features that affect material properties. The book is divided in three parts: I ‘From interganular order to disorder’ deals with the concept of the perfect grain boundary, at equilibrium, and questions the maintenance of its crystalline state. II ‘From the ideal to the real grain boundary’ deals with the concept of the faulted grain boundary. It attempts to reveal the influence of the grain boundary structure on its defects, their formation and their accommodation. III ‘From free to constrained grain boundaries’ is devoted to grain boundary ensembles starting from the triple junction (the elemental configuration) to real grain boundary networks in polycrystals This part covers a new and topical development in the field. It presents for the first time an avenue for researchers working on macroscopic aspects, to approach the scale of description of grain boundaries. Audience: graduate students, researchers and engineers in Materials Science and all those scientists pursuing grain boundary engineering in order to improve materials performance.
Many of the most important properties of materials in high-technology applications are strongly influenced or even controlled by the presence of solid interfaces. In this work, leading international authorities review the broad range of subjects in this field focusing on the atomic level properties of solid interfaces.
Atom Probe Tomography is aimed at beginners and researchers interested in expanding their expertise in this area. It provides the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques, and includes detailed explanations of the fundamentals, the instrumentation, contemporary specimen preparation techniques, and experimental details, as well as an overview of the results that can be obtained. The book emphasizes processes for assessing data quality and the proper implementation of advanced data mining algorithms. For those more experienced in the technique, this book will serve as a single comprehensive source of indispensable reference information, tables, and techniques. Both beginner and expert will value the way the book is set out in the context of materials science and engineering. In addition, its references to key research outcomes based upon the training program held at the University of Rouen—one of the leading scientific research centers exploring the various aspects of the instrument—will further enhance understanding and the learning process. - Provides an introduction to the capabilities and limitations of atom probe tomography when analyzing materials - Written for both experienced researchers and new users - Includes exercises, along with corrections, for users to practice the techniques discussed - Contains coverage of more advanced and less widespread techniques, such as correlative APT and STEM microscopy
This book provides an introduction to the immersed interface method (IIM), a powerful numerical method for solving interface problems and problems defined on irregular domains for which analytic solutions are rarely available. This book gives a complete description of the IIM, discusses recent progress in the area, and describes numerical methods for a number of classic interface problems. It also contains many numerical examples that can be used as benchmark problems for numerical methods designed for interface problems on irregular domains.
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
The behavior of adjacent materials at the boundary where they meet is an essential aspect of creating new engineering materials. Grain Boundary Migration in Metals is an authoritative account of the physics of grain boundary motion, written by two highly respected researchers. They provide a comprehensive overview of current knowledge regarding the migration process and how it affects microstructure evolution, focusing their treatment exclusively on the properties and behavior of grain boundaries with well defined geometry and crystallography. With their emphasis on applications-such as the characterization of microstructure and texture, recrystallization, and grain growth-the authors effectively fill the gap between the physics of grain boundary motion and its engineering practicality. The need for better microstructural design motivates permanent thrust for research in the field, and continued rapid progress appears inevitable. Grain Boundary Migration in Metals provides a solid foundation in the phenomena and serves as a valuable reference for professionals in materials science, solid state physics, and any industry engaged in metals production and the heat treatment of metals and alloys.