Download Free Bose Einstein Correlations And The Equation Of State Of Nuclear Matter In Relativistic Heavy Ion Collisions Book in PDF and EPUB Free Download. You can read online Bose Einstein Correlations And The Equation Of State Of Nuclear Matter In Relativistic Heavy Ion Collisions and write the review.

Experimental spectra of the CERN/SPS experiments NA44 and NA49 are fitted while using four different equations of state of nuclear matter within a relativistic hydrodynamic framework. For the freeze-out temperatures, T{sub f} = 139 MeV and T{sub f} = 116 MeV, respectively, the corresponding freeze-out hypersurfaces and Bose-Einstein correlation functions for identical pion pairs are discussed. It is concluded, that the Bose-Einstein interferometry measures the relation between the temperature and the energy density in the equation of state of nuclear matter at the late hadronic stage of the fireball expansion. It is necessary, to use the detailed detector acceptances in the calculations for the Bose-Einstein correlations.
We introduce the coalescence variables, a set of three boost-invariant kinematic quantities which may be used in analyzing n-particle correlations. These variables characterize the invariant mass of an n-particle and in three directions and separate the timelike and spacelike characteristics of the source. The analytic Kolehmanien-Gyulassy model is generalized to give two, three, and four-particle correlation functions, with coherence and Coulomb corrections applied to the basic formalism. We demonstrate the relation of the coalescence variables to be radius and duration of the source, and find that for sufficiently large transverse radii, Coulomb effects can suppress the structure of the Hanbury-Brown-Twiss correlations so that no significant information on source size can be obtained. 11 refs., 10 figs.
This book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.
The current relativistic heavy ion program at CERN and BNL aims at investigating the equilibration properties of hadronic matter at extreme temperatures and densities where quarks and gluons are expected to be the physically relevant degrees of freedom for particle production processes. The theoretical discussion of these collision systems is complicated by their mesoscopic character. They are not sufficiently small to allow for an analytical description in terms of elementary processes. They are not sufficiently large to take a description in terms of macroscopic observables for granted. Even if simple thermodynamically of hydrodynamically inspired models account for the data, the task remains to understand the microscopic origin of their success, and to establish to what extent such an agreement is necessary or accidental. The authors discuss algorithms which allow to calculate identical two-particle correlations from numerical simulations of relativistic heavy ion collisions. A toy model is used to illustrate their properties.
Quantum Chromodynamics calculations on the lattice predict that at extremely high energy densities, colliding nuclear matter would undergo a phase transition to deconfined matter of quarks and gluons. The nature of transition, the temperature and the energy density at which the transition occurs depend upon the details of calculations; these depend upon the number of quark flavors introduced in the calculation. This deconfined state of quark and gluons has been named Quark Gluon Plasma(QGP). This work purports to understand the azimuthal distribution of photons produced in Cu+Cu collisions at 200 GeV with Photon Multiplicity Detector (PMD). The PMD is part of the STAR (Solenoidal Tracker At RHIC) experiment.PMD covers a pseudorapidity range of -3.7 to -2.3 with full azimuthal coverage and measures the multiplicity and spatial distribution of photons on an event-by-event basis.The value of second order azimuthal coefficient has been determined for different centralities in different pseudorapidity windows and its pseudorapidity and centrality dependence has been obtained.