Download Free Boronate Diol Interactions In Membranes Book in PDF and EPUB Free Download. You can read online Boronate Diol Interactions In Membranes and write the review.

Molecular recognition at biomembranes is one of the more poorly understood aspects of fundamental research in physical organic chemistry. Our aim was to improve our understanding of the molecular recognition of polysaccharides at biomembranes, in particular developing synthetic lipids that will recognise and report on the presence of glycosaminoglycans (GAG polysaccharides), like heparin and hyaluronic acid. Elevated levels of hyaluronic acid have been implicated in bladder carcinoma and osteoarthritis, and the use of heparin for medical applications is well documented. We synthesised a boronic acid capped lipid that also bore a fluorinated fluorescent reporter group, which could report on multivalent recognition events at bilayer membranes by fluorescent quenching and changes in the lateral distribution of the reporter groups. These preliminary studies showed these boronic acid capped fluorinated lipids gave a fluorescent signal upon interaction with simple mono- and poly- saccharides, albeit with unexpectedly weak binding to these saccharides. To understand and quantify the weaker binding of saccharides to membrane bound boronic acids a series of novel fluorescent and chromogenic lipids were synthesised that bore the reporter group close to the boronic acid. These studies revealed several underlying factors that had important roles in the recognition of oligosaccharides by boronic acid capped lipids. For the first time the effect of the bilayer on saccharide/boronic acid recognition was quantified, with the membrane weakening the interaction 33-fold. We were able to propose a model for the interaction of saccharides for membrane bound boronic acids that explained many of these unexpected observations. We also devised a parallel approach using GAGs to open or close synthetic membrane channels. Using a GAG to switch on the release of an ion or dye would generate a fluorescent signal that amplifies the original recognition event and improves sensitivity for GAGs. Proof-of-principle studies using palladium ions to open dye-transporting channels were successful and these studies were followed by the synthesis of boronic acid-capped cholates. Incorporation of boronic acid-capped cholates into membranes caused changes in the rate of release of alkali metal ions, which caused an enclosed fluorescent dye to give a signal, in the presence or absence of saccharides. These compounds successfully gave a response to the simple saccharide D-fructose but gave no response to other saccharides tested, including various hyaluronic acids. Although we were not able to develop a selective sensor for GAGs, we have developed a model for saccharide/boronic acid interactions that is a valuable addition to the physical organic chemistry of membranes.
For the first time, the whole field of organoboronic acids is presented in one comprehensive handbook. Professor Dennis Hall, a rising star within the community, covers all aspects of this important substance class, including applications in chemistry, biology and medicine. Starting with an introduction to the structure, properties, and preparation of boronic acid derivatives, together with an overview of their reactions and applications, the book goes on to look at metal-catalyzed borylation of alkanes and arenas, coupling reactions and rhodium-catalyzed additions of boronic acids to alkenes and carbonyl compounds. There follows chapters on copper-promoted C-O and C-N cross-coupling of boronic acids, recent applications in organic synthesis, as well as alpha-haloalkylboronic esters in asymmetric synthesis. Later sections deal with cycloadditions, organoboronic acids, oxazaborolidines as asymmetric inducers, and boronic acid based receptors and sensors. The whole is rounded off with experimental procedures, making this invaluable reading for organic, catalytic and medicinal chemists, as well as those working in organometallics.
This book contains contributions from interdisciplinary scientists to collectively address the issue of targeting carbohydrate recognition for the development of novel therapeutic and diagnostic agents. The book covers (1) biological problems involving carbohydrate recognition, (2) structural factors mediating carbohydrate recognition, (3) design and synthesis of lectin mimics that recognize carbohydrate ligands with high specificity and affinity, and (4) modulation of biological and pathological processes through carbohydrate recognition.
The desire to quantify the presence of analytes within diverse physiological, environmental and industrial systems has led to the development of many novel detection methods. In this arena, saccharide analysis has exploited the pair-wise interaction between boronic acids and saccharides. Boronic Acids in Saccharide Recognition provides a comprehensive review and critical analysis of the current developments in this field. It also assesses the potential of this innovative approach, outlining future lines of research and possible applications. Topics include: the molecular recognition of saccharides, the complexation of boronic acids with saccharides, fluorescent sensors and the modular construct of fluorescent sensors, further sensory systems for saccharide recognition and an extensive bibliography. This high level book is ideal for researchers both academic and industrial who require a comprehensive overview of the subject.
An essential reference for any laboratory working in the analytical fluorescence glucose sensing field. The increasing importance of these techniques is typified in one emerging area by developing non-invasive and continuous approaches for physiological glucose monitoring. This volume incorporates analytical fluorescence-based glucose sensing reviews, specialized enough to be attractive to professional researchers, yet appealing to a wider audience of scientists in related disciplines of fluorescence.
This practical manual is devised for organic chemists and biochemists who, in the course of their researches and without previous experience, need to determine an ionization constant. We are gratified that earlier editions were much used for this purpose and that they also proved adequate for the in service training of technicians and technical officers to provide a Department with a pK service. The features of previous editions that gave this wide appeal have been retained, but the subject matter has been revised, extended, and brought up to date. We present two new chapters, one of which describes the determination of the stability constants of the complexes which organic ligands form with metal cations. The other describes the use of more recently introduced techniques for the determination of ionization constants, such as Raman and nuclear magnetic resonance spectroscopy, thermometric titrations, and paper electro phoresis. Chapter 1 gives enhanced help in choosing between alternative methods for determining ionization constants. The two chapters on potentiometric methods have been extensively revised in the light of newer understanding of electrode processes and of the present state of the art in instrumen tation.
Affinity chromatography, with its exquisite specificity, is based upon molecular recognition. It is a powerful tool for the purification of biomolecules. In recent years, numerous new applications and modified techniques have been derived from gro- specific interactions and biological recognition principles. An up-to-date review of the past, current, and future applications of affinity chromatography has been presented in the introductory chapter by Meir Wilchek and Irwin Chaiken. Though many of these new applications and techniques are well documented in the literature, it is often difficult to find methods that are written with the intent of helping new practitioners of affinity chromatography. This volume on Affinity Chromatography: Methods and Protocols is intended for the novice, as well as for - perts in the field. The protocols are written by experts who have developed and/or successfully employed these methods in their laboratories. Each chapter describes a specific technique, and since the book is intended to help the beginner, each technique is described simply and clearly, making sure that all relevant steps are included, assuming no previous knowledge. Each chapter contains an introduction describing the principles involved, followed by a Materials and Methods section, which lays the groundwork for the reader to conduct experiments step-by-step, in an orderly fashion. The following Notes section, which describes many of the problems that can occur, makes suggestions for overcoming them, and provides alternate procedures. These are precisely the sort of important, practical details that never seem to appear in the published literature.
The Boron '97 meeting was a great success in summarising all recent developments in basic and applied research on boron's function, especially in plants. New techniques have since been developed and new insight has been gained into the role of boron in plant and animal metabolism. Nevertheless, there were still lots of open questions. The aim of the present workshop held in Bonn as a satellite meeting to the International Plant Nutrition Colloquium was thus to gather all actual information which has been gained since the Boron '97 meeting and to compile knowledge, both from animal and plant sciences. Furthermore, applied aspects had to be addressed too, as there is an increasing awareness of boron deficiencies even in crops such as wheat, which have formerly not been considered as responsive to boron application. Genetic differences in boron demand and efficiency within one species are a further important topic which has gained importance since the 1997 meeting. More in-depth knowledge on the mechanisms of boron efficiency are required as an increased efficiency will be one major possibility to maintain and improve crop yields for resource-poor farmers. Nevertheless, it has also clearly been shown that an adequate supply of boron is needed to obtain high yields of crops with a high quality, and that a sustainable agriculture has to provide an adequate boron supply to compensate for inevitable losses through leaching (especially in the humid tropics and temperate regions) and for the boron removal by the crop.
Contemporary Aspects of Boron: Chemistry and Biological Applications highlights the biological activity and applications of boron containing compounds. The authors’ specific approach surveys general features of the subject, while exploring new and novel strategies for preparing certain chemical and natural boron products that are of significant substance in medicinal chemistry. For example, cancer treatment is one of the most important issues related to such products. In addition to contributing to the development of new drugs by addressing biological applications in medicinal and industrial fields, the book provides a comprehensive review of the most relevant components that comprise the pharmaceutical, medicinal and environmental applications of boron containing compounds. * Timely and comprehensive * Provides new insights to active researchers in the field * Presents concepts and methods in simple scientific terms
Bioconjugate Techniques, 2nd Edition, is the essential guide to the modification and cross linking of biomolecules for use in research, diagnostics, and therapeutics. It provides highly detailed information on the chemistry, reagent systems, and practical applications for creating labeled or conjugate molecules. It also describes dozens of reactions with details on hundreds of commercially available reagents and the use of these reagents for modifying or cross linking peptides and proteins, sugars and polysaccharides, nucleic acids and oligonucleotides, lipids, and synthetic polymers. A one-stop source for proven methods and protocols for synthesizing bioconjugates in the lab Step-by-step presentation makes the book an ideal source for researchers who are less familiar with the synthesis of bioconjugates More than 600 figures that visually describe the complex reactions associated with the synthesis of bioconjugates Includes entirely new chapters on the latest areas in the field of bioconjugation as follows: Microparticles and nanoparticlesSilane coupling agentsDendrimers and dendronsChemoselective ligationQuantum dotsLanthanide chelatesCyanine dyesDiscrete PEG compoundsBuckyballs,fullerenes, and carbon nanotubesMass tags and isotope tagsBioconjugation in the study of protein interactions