Download Free Boron Based Nanostructures Book in PDF and EPUB Free Download. You can read online Boron Based Nanostructures and write the review.

The phenomenal success of nanostructures in various applications has led to the exploration of a plethora of novel nanomaterials. Nanoboron is no exception. Boron as material has the ability to form covalently bonded stable networks and finds use in a large variety of applications. This book provides a complete overview of the latest developments i
This book presents nanomaterials as predicted by computational modelling and numerical simulation tools, and confirmed by modern experimental techniques. It begins by summarizing basic theoretical methods, then giving both a theoretical and experimental treatment of how alkali metal clusters develop into nanostructures, as influenced by the cluster's "magic number" of atoms. The book continues with a discussion of atomic clusters and nanostructures, focusing primarily on boron and carbon, exploring, in detail, the one-, two-, and three-dimensional structures of boron and carbon, and describing their myriad potential applications in nanotechnology, from nanocoating and nanosensing to nanobatteries with high borophene capacity. The broad discussion of computational modelling as well as the specific applications to boron and carbon, make this book an essential reference resource for materials scientists in this field of research.
Reveals Innovative Research on BN Nanotubes and NanosheetsNanotubes and Nanosheets: Functionalization and Applications of Boron Nitride and Other Nanomaterials is the first book devoted to nanotubes and nanosheets made of boron nitride (BN). It shows how the properties of BN nanotubes and nanosheets have led to many exciting applications where carb
Noted experts review the current status of boron-containing drugs and materials for molecular medical diagnostics Boron-Based Compounds offers a summary of the present status and promotes the further development of new boron-containing drugs and advanced materials, mostly boron clusters, for molecular medical diagnostics. The knowledge accumulated during the past decades on the chemistry and biology of bioorganic and organometallic boron compounds laid the foundation for the emergence of a new area of study and application of boron compounds as lipophilic pharmacophores and modulators of biologically active molecules.This important text brings together in one comprehensive volume contributions from renowned experts in the field of medicinal chemistry of boron compounds. The authors cover a range of the most relevant topics including boron compounds as modulators of the bioactivity of biomolecules, boron clusters as pharmacophores or for drug delivery, boron compounds for boron neutron capture therapy (BNCT) and for diagnostics, as well as in silico molecular modeling of boron- and carborane-containing compounds in drug design. Authoritative and accessible, Boron-Based Compounds: Contains contributions from a panel of internationally renowned experts in the field Offers a concise summary of the current status of boron-containing drugs and materials used for molecular diagnostics Highlights the range and capacity of boron-based compounds in medical applications Includes information on boron neutron capture therapy and diagnostics Designed for academic and industrial scientists, this important resource offers the cutting-edge information needed to understand the current state of boron-containing drugs and materials for molecular medical diagnostics.
Carbon nanotubes (CNTs) and Boron nitride nanotubes (BNNTs) are part of the so-called B-C-N material system, which includes novel nanostructures of carbon (C), doped-carbon, boron (B), boron nitride (BN), carbon nitride (CNx), boron-carbon nitride (BxCyNz), and boron carbide (BxCy). BNNTs and CNTs are structurally similar and share extraordinary mechanical properties, but they differ in chemical, biological, optical, and electrical properties. Therefore, hybrid nanotubes constructed of B, C, N elements are expected to form a new class of nanotubes with tunable properties between those of CNTs and BNNTs. In addition, these B-C-N nanostructures will further enhance and complement the applications of CNTs and BNNTs. With contributions from leading experts, B-C-N Nanotubes and Related Nanostructures is the first book to cover all theoretical and experimental aspects of this emerging material system, and meets the need for a comprehensive summary of the tremendous advances in research on B-C-N materials in recent years.
The book focuses on two concurrent experimental therapies in cancer treatment known as boron neutron capture therapy (BNCT) and gadolinium neutron capture therapy (GdNCT) using a variety of boron- and gadolinium-based compounds. Some of the gadolinium compounds serve the dual purpose as being MRI contrast agents and GdNCT agents. The book describes why BNCT & GdNCT were not at the forefront of the clinical trials during the past seven to eight decades since the discovery of neutrons by John Chadwick in 1932 and how the latest development in the synthesis of target boron- and gadolinium-based drugs has turned the area into the hottest one worthy of further investigation with the new clinical trials in the USA and elsewhere.
The aim of this book is to provide an overview on the importance of stoichiometry in the materials science field. It presents a collection of selected research articles and reviews providing up-to-date information related to stoichiometry at various levels. Being materials science an interdisciplinary area, the book has been divided in multiple sections, each for a specific field of applications. The first two sections introduce the role of stoichiometry in nanotechnology and defect chemistry, providing examples of state-of-the-art technologies. Section three and four are focused on intermetallic compounds and metal oxides. Section five describes the importance of stoichiometry in electrochemical applications. In section six new strategies for solid phase synthesis are reported, while a cross sectional approach to the influence of stoichiometry in energy production is the topic of the last section. Though specifically addressed to readers with a background in physical science, I believe this book will be of interest to researchers working in materials science, engineering and technology.
Boron Nitride Nanotubes in Nanomedicine compiles, for the first time in a single volume, all the information needed by researchers interested in this promising type of smart nanoparticles and their applications in biomedicine. Boron nitride nanotubes (BNNTs) represent an innovative and extremely intriguing class of nanomaterials. After introducing BNNTs and explaining their preparation and evaluation, the book shows how the physical, chemical, piezoelectric and biocompatibility properties of these nanotubes give rise to their potential uses in biomedicine. Evidence is offered (from both in vitro and in vivo investigations) for how BNNTs can be useful in biomedical and nanomedicine applications such as therapeutic applications, tissue regeneration, nanovectors for drug delivery, and intracellular nanotransducers. - Covers a range of promising biomedical BNNT applications - Provides great value not just to academics but also industry researchers in fields such as materials science, molecular biology, pharmacology, biomedical engineering, and biophysical sciences - Offers evidence for how BNNTs can be useful in biomedical and nanomedicine applications such as therapy, tissue regeneration, nanovectors for drug delivery, and intracellular nanotransducers - Incorporates, for the first time in a single volume, all the information needed by researchers interested in this promising type of smart nanoparticles and their applications in biomedicine
This volume on Clusters brings together contributions from a large number of specialists. A central element for all contributions is the use of advanced computational methodologies and their application to various aspects of structure, reactivity and properties of clusters. The size of clusters varies from a few atoms to nanoparticles. Special emphasis is given to bringing forth new insights on the structure and properties of these systems with an eye towards potential applications in Materials Science. Overal, the volume presents to the readers an amazing wealth of new results. Particular subjects include water clusters, Silicon, Iron, Nickel and Gold clusters, carbon-titanium microclusters and nanoparticles, fullerenes, carbon nanotubes, chiral carbon nanotubes, boron nanoclusters and more.
The aim of this book is to represent an overview of applications of boron-based materials in the field of material science to biomedicine. This text is a collection of selected research articles and reviews, including recent efforts in several applications of boron-containing materials. All chapters are written by researchers who are active on the frontline. The chapters in this book will be helpful for many students and researchers involved in the field of boron-based material