Download Free Borehole Thermal Energy Storage Systems For Storage Of Industrial Excess Heat Book in PDF and EPUB Free Download. You can read online Borehole Thermal Energy Storage Systems For Storage Of Industrial Excess Heat and write the review.

Improving industrial energy efficiency is considered an important factor in reducing carbon dioxide emissions and counteract climate change. For many industrial companies in cold climates, heat generated at the site in summer will not be needed to fulfil the site heat demand during this time, and is thus removed to the outdoor air. Although a mismatch between heat generation and heat demand primarily being seasonal, a mismatch may also exist at times in the winter, e.g. during milder winter days or high production hours. If this excess heat instead of being sent to the outdoors was stored for later use when it is needed, purchased energy for the site could be decreased. One way to do this is by the use of a borehole thermal energy storage (BTES) system. A BTES system stores energy directly in the ground by using an array of closely drilled boreholes through which a heat carrier, often water, is circulated. So far, BTES systems used for heating purposes have mainly been used for storage of solar thermal energy. The BTES system has then been part of smaller district solar heating systems to reduce the seasonal mismatch between incoming solar radiation and heat demand, thus increasing system solar fraction. For this application of BTES systems, energy for storage can be controlled by the sizing of the solar collector area. At an industrial site, however, the energy that can be stored will be limited to the excess heat at the site, and the possible presence of several time-varying processes generating heat at different temperatures gives options as to which processes to include in the heat recovery process and how to design the BTES system. Moreover, to determine the available heat for storage at an industrial site, individual measurements of the heat streams to be included are required. Thus, this must be made more site-specific as compared to that of the traditional usage of BTES systems where solar thermal energy is stored, in which case long-time historic solar radiation data to do this is readily accessible for most locations. Furthermore, for performance predictions of industrial BTES systems to be used for both seasonal and short-term storage of energy, models that can treat the short-term effects are needed, as traditional models for predicting BTES performance do not consider this. Although large-scale BTES systems have been around since the 1970’s, little data is to be found in the literature on how design parameters such as borehole spacing and borehole depth affect storage performance, especially for industrial BTES applications. Most studies that can be found with regard to the designing of ground heat exchanger systems are for traditional ground source heat pumps, working at the natural temperature of the ground and being limited to only one or a few boreholes. In this work, the performance of the first and largest industrial BTES system in Sweden was first presented and evaluated with regard to the storage’s first seven years in operation. The BTES system, which has been used for both long- and short-term storage of energy, was then modelled in the IDA ICE 4.8 environment with the aim to model actual storage performance. Finally, the model was used to conduct a parametric study on the BTES system, where e.g. the impact on storage performance from borehole spacing and characteristics of the storage supply flow at heat injection were investigated. From the performance evaluation it could be concluded that lower than estimated quantities and/or quality of the excess heat at the site, resulting in lower storage supply flow temperatures at heat injection, has hindered the storage from reaching temperatures necessary for significant amounts of energy to be extracted. Based on the repeating annual storage behavior seen for the last years of the evaluation period, a long-term annual heat extraction and ratio of energy extracted to energy injected of approximately 400 MWh/year and 20% respectively are likely. For the comparison of predicted and measured storage performance, which considered a period of three years, predicted values for total injected and extracted energy deviated from measured values by less than 1 and 3% respectively, and predicted and measured values for injected and extracted energy followed the same pattern throughout the period. Furthermore, the mean relative difference for the storage temperatures was 4%. A time-step analysis confirmed that the intermittent heat injection and extraction, occurring at intervals down to half a day, had been captured in the three-year validation. This as predictions would become erroneous when the time step exceeded the time at which these changes in storage operation occur. Main findings from the parametric study include that 1) for investigated supply flows at heat injection, a high temperature was more important than a high flow rate in order to achieve high annual heat extractions and that 2) annual heat extraction would rapidly reduce as the borehole spacing was decreased from the one yielding the highest annual heat extraction, whereas the reduction in annual heat extraction was quite slow when the spacing was increased from this point. Another conclusion that came from the performance evaluation and the parametric study, as a consequence of the Emmaboda storage being designed as a high-temperature BTES system, intended working temperatures being 40–55 °C, was that the possibility of designing the BTES system for low working temperatures should be considered in the designing of a BTES system. Lower storage operation temperatures allow for more energy to be injected and in turn for more energy to be extracted and reduces storage heat losses to the surroundings. Ökad energieffektivisering inom industrin anses vara en nyckelkomponent för att minska koldioxidutsläpp och motarbeta klimatförändringar. För många industrier belägna i kallare klimat behövs under sommaren inte all den värme som alstras på anläggningen för att uppnå anläggningens värmebehov, och värmen avlägsnas därför till utomhusluften. Även om ett överskott av värme framförallt existerar under sommaren kan överskottsvärme även uppstå under vintern, till exempel under mildare vinterdagar eller högproduktionstimmar. Om överskottsvärmen istället för att avlägsnas till utomhusluften lagras till senare då den behövs skulle köpt energi till anläggningen kunna minskas. Ett sätt att åstadkomma detta är med hjälp av ett borrhålsvärmelager. Ett borrhålsvärmelager lagrar energi direkt i marken med hjälp av ett flertal närliggande borrhål genom vilka en värmebärare, vanligtvis vatten, cirkuleras. Hittills har borrhålsvärmelager med syfte att leverera värme framförallt använts för lagring av termisk solenergi. Borrhålsvärmelager har då ingått i solvärmesystem för uppvärmning av enstaka bostadskvarter, för att på så vis minska den säsongsbaserade missanpassningen mellan solinstrålning och värmebehov och öka värmesystemets solfraktion. För denna applikation av borrhålsvärmelager kan energimängder för lagring kontrolleras av storleken på solfångarkollektorytan. För industriella borrhålsvärmelagertillämpningar däremot, bestäms energimängder som kan lagras av den tillgängliga överskottsvärmen vid anläggningen. En industri har dessutom vanligtvis ett flertal energianvändande processer, vilka på grund av tidsvarierande drift och olika kvalitet på den alstrade värmen ger upphov till alternativ för vilka processer som bör integreras i värmeåtervinningssystemet och hur själva borrhålsvärmelagret bör utformas. För beräkning av värmemängder tillgängliga för lagring vid en industriell anläggning krävs dessutom mätdata för de individuella värmeströmmar som ska ingå i lagerprocessen, vilket betyder att detta måste genomföras mer fallspecifikt för industriella borrhålsvärmelagertillämpningar än för borrhålsvärmelager för lagring av solenergi, där historisk solinstrålningsdata för beräkning av detta är direkt tillgänglig för de flesta platser. För prediktioner av prestandan av borrhålsvärmelager användandes för både lång- och korttidslagring behövs dessutom modeller som kan hantera effekterna från korttidslagringen, vilket traditionella modeller för borrhålsvärmelagerprediktioner inte gör. Trots att storskaliga borrhålsvärmelager har byggts sedan 1970-talet finns lite data publicerat över hur olika systemparametrar så som borrhålsavstånd och borrhålsdjup påverkar lagerprestandan, särskilt med avseende på industriella borrhålsvärmelagertillämpningar. De flesta studier i litteraturen kopplat till utformning av borrhålsvärmeväxlarsystem avser traditionell bergvärme där värmepumpen arbetar mot marken vid sin naturliga temperatur och enbart ett fåtal borrhål används. I det här arbetet genomfördes först en utvärdering av det första borrhålsvärmelagret för lagring av industriell överskottsvärme i Sverige med avseende på lagrets första sju år i drift. Borrhålsvärmelagret, vilket har använts för både lång- och korttidslagring, modellerades sedan i IDA ICE 4.8 med målet att återskapa lagrets utfall. Slutligen användes den validerade borrhålsvärmelagermodellen för en parameterisering av lagret, där påverkan på inladdad och urladdad energi och borrhålsvärmelagerverkningsgrad från bland annat borrhålsavstånd och temperatur och storlek på flödet till lagret vid laddning studerades. Från uppföljningen av lagrets utfall konstaterades det att lägre än uppskattade mängder överskottsvärme och/eller kvalitet på överskottsvärmen, resulterande i lägre än uppskattade framledningstemperaturer till lagret vid laddning, har hindrat lagret från att nå temperaturer nödvändiga för att väsentliga mängder energi ska kunna hämtas upp från lagret. Baserat på det på årsbasis cykliska beteende noterat för lagret för de sista åren av utvärderingen är rimliga långsiktiga värden för urladdad energi och borrhålsvärmelagerverkningsgrad cirka 400 MWh/år respektive 20%. För jämförelsen mellan predikterad och uppmätt lagerprestanda, vilken avser en period om tre år, avvek predikterade värden för inladdad och urladdad energi från uppmätta värden med mindre än 1% respektive 3%. Värden för predikterad och uppmätt inladdad och urladdad energi följde dessutom varandra väl under de tre åren. Vidare var den genomsnittliga relativa skillnaden för lagertemperaturerna för valideringsperioden 4%. En tidsstegsanalys bekräftade att modellen hade fångat upp effekterna av den intermittenta driften av lagret, inträffande vid intervall ned till halva dygn, då prediktioner blev felaktiga när simuleringstidssteget överskred tiden för vilka ändringar mellan laddning och urladdning av lagret ägt rum. Huvudsakliga resultat från parameterstudien inkluderar att 1) för undersökta flöden till lagret vid laddning var en hög temperatur viktigare än ett stort massflöde för att uppnå en hög årlig urladdning av energi och 2) den mängd energi som på årsbasis kan hämtas upp från lagret sjönk hastigt när borrhålsavståndet minskades från det avstånd som resulterade i att mest energi kunde laddas ur, medan en långsam minskning sågs när borrhålsavståndet ökades från denna punkt. Ytterligare en slutsats kopplat till påverkan på lagerprestanda från ingående systemparametrar är att möjligheter för utformning av ett lågtemperaturlager bör beaktas vid planering av byggande av borrhålsvärmelager. Genom att reducera lagrets arbetstemperatur kan mer energi laddas in i lagret, vilket i sin tur innebär att mer energi kan laddas ur. En lägre arbetstemperatur innebär även lägre värmeförluster från lagret till dess omgivning.
Advances in Ground-Source Heat Pump Systems relates the latest information on source heat pumps (GSHPs), the types of heating and/or cooling systems that transfer heat from, or to, the ground, or, less commonly, a body of water. As one of the fastest growing renewable energy technologies, they are amongst the most energy efficient systems for space heating, cooling, and hot water production, with significant potential for a reduction in building carbon emissions. The book provides an authoritative overview of developments in closed loop GSHP systems, surface water, open loop systems, and related thermal energy storage systems, addressing the different technologies and component methods of analysis and optimization, among other subjects. Chapters on building integration and hybrid systems complete the volume. - Provides the geological aspects and building integration covered together in one convenient volume - Includes chapters on hybrid systems - Presents carefully selected chapters that cover areas in which there is significant ongoing research - Addresses geothermal heat pumps in both heating and cooling modes
Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. - Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes - Describes latent heat storage systems and thermochemical heat storage - Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry
Çukurova University, Turkey in collaboration with Ljubljana University, Slovenia and the International Energy Agency Implementing Agreement on Energy Conservation Through Energy Storage (IEA ECES IA) organized a NATO Advanced Study Institute on Thermal Energy Storage for Sustainable Energy Consumption – Fundamentals, Case Studies and Design (NATO ASI TESSEC), in Cesme, Izmir, Turkey in June, 2005. This book contains manuscripts based on the lectures included in the scientific programme of the NATO ASI TESSEC.
Underground thermal energy storage (UTES) provide us with a flexible tool to combat global warming through conserving energy while utilizing natural renewable energy resources. Primarily, they act as a buffer to balance fluctuations in supply and demand of low temperature thermal energy. Underground Thermal Energy Storage provides an comprehensive introduction to the extensively-used energy storage method. Underground Thermal Energy Storage gives a general overview of UTES from basic concepts and classifications to operation regimes. As well as discussing general procedures for design and construction, thermo-hydro geological modeling of UTES systems is explained. Finally, current real life data and statistics are include to summarize major global developments in UTES over the past decades. The concise style and thorough coverage makes Underground Thermal Energy Storage a solid introduction for students, engineers and geologists alike.
Advances in Solar Heating and Cooling presents new information on the growing concerns about climate change, the security of energy supplies, and the ongoing interest in replacing fossil fuels with renewable energy sources. The amount of energy used for heating and cooling is very significant, estimated, for example, as half of final energy consumption in Europe. Solar thermal installations have the potential to meet a large proportion of the heating and cooling needs of both buildings and industry and the number of solar thermal installations is increasing rapidly. This book provides an authoritative review of the latest research in solar heating and cooling technologies and applications. - Provides researchers in academia and industry with an authoritative overview of heating and cooling for buildings and industry in one convenient volume - Part III, 'Solar cooling technologies' is contributed by authors from Shanghai Jiao Tong University, which is a world-leader in this area - Covers advanced applications from zero-energy buildings, through industrial process heat to district heating and cooling
Storing Energy: With Special Reference to Renewable Energy Sources, Second Edition has been fully revised and substantially extended to provide up-to-date and essential discussion that will support the needs of the world's future energy and climate change policies. New sections cover thermal energy storage, tidal storage, sustainability issues in relation to storing energy and impacts on global energy markets. Various systems are discussed, including mechanical/kinetic, thermal, electrochemical and other chemical, as well as other emerging technologies. Incorporating advancements described in the book will help the people of the world further overcome the problems related to future energy and climate change. - Covers all types of energy storage systems, allowing and encouraging comparisons to be made - Written by world experts in the field to provide the latest developments in this fast moving and vital technology - Covers the technical, environmental, social and political aspects related to the storing of energy, and in particular, renewable energy
Until very recently, energy supply of the world has been treated as being nearly inexhaustible. Nowadays about 90 percent of the energy used is obtained from non-renewable resources: oil, natural gas, coal and uranium. These resources are being used up at an alarming rate. To meet our demands we are now searching for new sources of energy. One of these new sources of energy is solar energy which will assume increasing importance. It is free but means must be developed to use it economically. Research is actively under way to reduce the storage cost of this low intensity energy and for the design of economical systems. The purpose of this Institute is to provide an international forum for the dissemination of information on solar energy utilization: fundamentals and applications in industry. This meeting is primarily a high level teaching activity. The subject is treated in considerable depth by lecturers eminent in their field. The other participants include scientists, engineers, and senior graduate students who themselves are involved in a similar research and who wish to learn more about current developments, as well as scientists from other areas who are planning to research on solar energy. The lectures are supplemented by informal discussions designed to encourage the free and critical exchange of ideas. A limited number of contributions are also included. This volume contains both basic and applied information contributed during the Institute. The editors appreciate the cooperation of Martinus Nijhoff Publishezsin making the proceedings widely available.
Advanced District Heating and Cooling (DHC) Systems presents the latest information on the topic, providing valuable information on the distribution of centrally generated heat or cold energy to buildings, usually in the form of space heating, cooling, and hot water. As DHC systems are more efficient and less polluting than individual domestic or commercial heating and cooling systems, the book provides an introduction to DHC, including its potential contribution to reducing carbon dioxide emissions, then reviews thermal energy generation for DHC, including fossil fuel-based technologies, those based on renewables, and surplus heat valorization. Final sections address methods to improve the efficiency of DHC. - Gives a comprehensive overview of DHC systems and the technologies and energy resources utilized within these systems - Analyzes the various methods used for harnessing energy to apply to DHC systems - Ideal resource for those interested in district cooling, teleheating, heat networks, distributed heating, thermal energy, cogeneration, combined heat and power, and CHP - Reviews the application of DHC systems in the field, including both the business model side and the planning needed to implement these systems