Download Free Bone And Cartilage Regeneration Book in PDF and EPUB Free Download. You can read online Bone And Cartilage Regeneration and write the review.

This invaluable resource discusses clinical applications with effects and side-effects of applications of stem cells in bone and cartilage regeneration. Each chapter is contributed by a pre-eminent scientist in the field and covers such topics as skeletal regeneration by mesenchymal stem cells, clinical improvement of mesenchymal stem cell injection in injured cartilage and osteoarthritis, Good manufacturing practice (GMP), minimal critera of stem cells for clinical applications, future directions of the discussed therapies and much more. Bone & Cartilage Regeneration and the other books in the Stem Cells in Clinical Applications series will be invaluable to scientists, researchers, advanced students and clinicians working in stem cells, regenerative medicine or tissue engineering.
Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the formation of new bone and cartilage tissues. This book serves to demonstrate the interconnectedness of biomaterials, bone/cartilage cells, growth factors and stem cells in determining the regenerative process and thus the clinical outcome.
Bone and Cartilage Engineering provides a complete overview of recent knowledge in bone and cartilage tissue engineering. It follows a logical approach to the various aspects of extracorporal bone and cartilage tissue engineering. The cooperation between a basic scientist and a clinician made it possible to structure the book's content and style according to the interdisciplinary character of the field. The comprehensive nature of the book, including detailed descriptions of laboratory procedures, preclinical approaches, clinical applications, and regulatory issues, will make it an invaluable basis for everyone working in this field. This book will serve as a fundamental tool for basic researchers to establish or refine tissue engineering techniques as well as for clinicians to understand and use this modern therapeutic option.
This work is the result of a partnership that began in 2011, when I received for the first time the invitation to be the scientific editor of a book on bone grafting, by the still little publisher known as InTech. Now six years later, InTech has grown and thrived. My respect and warm approval for the quality of the publisher's work only increased. The hyaline cartilage is a tissue that challenges tissue engineering and regenerative medicine because of its avascular nature. In the 11 chapters of this book, the reader will find texts written by researchers working on advanced topics related to basic laboratory research, as well as excellent reviews on the clinical use of currently available therapies.
Tissue engineering takes advantages of the combined use of cultured living cells and three-dimensional scaffolds to reconstruct adult tissues that are absent or malfunctioning. This book brings together scientists and clinicians working on a variety of approaches for regenerating of damaged or lost cartilage and bone to assess the progress of this dynamic field. In its early days, tissue engineering was driven by material scientists who designed novel bio-resorbable scaffolds on which to seed cells and grow tissues. This ground-breaking work generated high expectations, but there have been significant stumbling blocks holding back the widespread use of these techniques in the clinic. These challenges, and potential ways of overcoming them, are given thorough coverage in the discussions that follow each chapter. The key questions addressed in this book include the following. How good must cartilage repair be for it to be worthwhile? What is the best source of cells for tissue engineering of both bone and cartilage? Which are the most effective cell scaffolds? What are the best preclinical models for these technologies? And when it comes to clinical trials, what sort of outcome measures should be used? With contributions from some of the leading experts in this field, this timely publication will prove essential reading for anyone with an interest in the field of tissue engineering.
This reference work presents the origins of cells for tissue engineering and regeneration, including primary cells, tissue-specific stem cells, pluripotent stem cells and trans-differentiated or reprogrammed cells. There is particular emphasis on current understanding of tissue regeneration based on embryology and evolution studies, including mechanisms of amphibian regeneration. The book covers the use of autologous versus allogeneic cell sources, as well as various procedures used for cell isolation and cell pre-conditioning , such as cell sorting, biochemical and biophysical pre-conditioning, transfection and aggregation. It also presents cell modulation using growth factors, molecular factors, epigenetic approaches, changes in biophysical environment, cellular co-culture and other elements of the cellular microenvironment. The pathways of cell delivery are discussed with respect to specific clinical situations, including delivery of ex vivo manipulated cells via local and systemic routes, as well as activation and migration of endogenous reservoirs of reparative cells. The volume concludes with an in-depth discussion of the tracking of cells in vivo and their various regenerative activities inside the body, including differentiation, new tissue formation and actions on other cells by direct cell-to-cell communication and by secretion of biomolecules.
Osteochondral defects can be challenging to treat, first, because the damaged articular cartilage has a poor intrinsic reparative capability, and second, because these defects cause chronic pain and serious disability. That is why cartilage repair remains one of the most challenging issues of musculoskeletal medicine. Arthroscopic and open techniques that have been developed over the last two decades intend to promote the success of complete repair of the articular cartilage defects; nevertheless, these therapies cannot always offer 100% success. Nowadays, cartilage tissue engineering is an emerging technique for the regeneration of cartilage tissue. Taking into consideration these perspectives, this book aims to present a summary of cartilage tissue engineering, including development, recent progress, and major steps taken toward the regeneration of functional cartilage tissue. Special emphasis is placed on the role of stimulating factors, including growth factors, gene therapies, as well as scaffolds, including natural, synthetic, and nanostructured.
In three Volumes this mini book series presents current knowledge and new perspectives on cartilage as a specialized yet versatile tissue. This third volume provides insight into current and future treatment strategies for repair of cartilage lesions. This book addresses Professors, researchers and PhD students who are interested in musculoskeletal and cartilage pathobiology and tissue-engineering.
This collection of articles by leading orthopedic and craniofacial surgeons and researchers comprehensively reviews the biology of bone formation and repair, the basic science of autologous bone graft, allograft, bone substitutes, and growth factors, and explore their clinical application in patients with bone repair problems.