Download Free Blast Retrofit Of Reinforced Concrete Walls And Slabs Book in PDF and EPUB Free Download. You can read online Blast Retrofit Of Reinforced Concrete Walls And Slabs and write the review.

With the upsurge in terrorism in recent years and the possibility of accidental blast threats, there is growing interest in manufacturing blast 'hardened' structures and retrofitting blast mitigation materials to existing structures. Composites provide the ideal material for blast protection as they can be engineered to give different levels of protection by varying the reinforcements and matrices.Part one discusses general technical issues with chapters on topics such as blast threats and types of blast damage, processing polymer matrix composites for blast protection, standards and specifications for composite blast protection materials, high energy absorbing composite materials for blast resistant design, modelling the blast response of hybrid laminated composite plates and the response of composite panels to blast wave pressure loadings. Part two reviews applications including ceramic matrix composites for ballistic protection of vehicles and personnel, using composites to protect military vehicles from mine blasts, blast protection of buildings using FRP matrix composites, using composites in blast resistant walls for offshore, naval and defence related structures, using composites to improve the blast resistance of columns in buildings, retrofitting using fibre reinforced polymer composites for blast protection of buildings and retrofitting to improve the blast response of concrete masonry walls.With its distinguished editor and team of expert contributors, Blast protection of civil infrastructures and vehicles using composites is a standard reference for all those concerned with protecting structures from the effects of blasts in both the civil and military sectors. - Reviews the role of composites in blast protection with an examination of technical issues, applications of composites and ceramic matrix composites - Presents numerical examples of simplified blast load computation and an overview of the basics of high explosives includes important properties and physical forms - Varying applications of composites for protection are explored including military and non-military vehicles and increased resistance in building columns and masonry walls
This book comprises select proceedings of the National Conference on Advances in Structural Technology (CoAST 2019). It brings together different applied and technological aspects of structural engineering. The main topics covered in this book include solid mechanics, composite structures, fluid-structure interaction, soil-structure interaction, structural safety, and structural health monitoring. The book also focuses on emerging structural materials and the different behavior of civil, mechanical, and aerospace structural systems. Given its contents, this book will be a useful reference for researchers and practitioners working in structural safety and engineering.
Although the disciplines of architecture and structural engineering have both experienced their own historical development, their interaction has resulted in many fascinating and delightful structures. To take this interaction to a higher level, there is a need to stimulate the inventive and creative design of architectural structures and to persuade architects and structural engineers to further collaborate in this process, exploiting together new concepts, applications and challenges. This set of book of abstracts and full paper searchable CD-ROM presents selected papers presented at the 3rd International Conference on Structures and Architecture Conference (ICSA2016), organized by the School of Architecture of the University of Minho, Guimarães, Portugal (July 2016), to promote the synergy in the collaboration between the disciplines of architecture and structural engineering. The set addresses all major aspects of structures and architecture, including building envelopes, comprehension of complex forms, computer and experimental methods, concrete and masonry structures, educating architects and structural engineers, emerging technologies, glass structures, innovative architectural and structural design, lightweight and membrane structures, special structures, steel and composite structures, the borderline between architecture and structural engineering, the history of the relationship between architects and structural engineers, the tectonics of architectural solutions, the use of new materials, timber structures and more. The contributions on creative and scientific aspects of the conception and construction of structures, on advanced technologies and on complex architectural and structural applications represent a fine blend of scientific, technical and practical novelties in both fields. This set is intended for both researchers and practitioners, including architects, structural and construction engineers, builders and building consultants, constructors, material suppliers and product manufacturers, and other experts and professionals involved in the design and realization of architectural, structural and infrastructural projects.
This book comprises select papers presented at the International Conference on Trends and Recent Advances in Civil Engineering (TRACE 2018). The book covers a wide range of topics related to recent advancements in structural engineering, structural health monitoring, rehabilitation and retrofitting of structures, and earthquake-resistant structures. Based on case studies and laboratory investigations, the book highlights latest techniques and innovative methods for building repair and maintenance. Recent development in materials being used in structural rehabilitation and retrofitting is also discussed. The contents of this book can be useful for researchers and professionals working in structural engineering and allied areas.
This book presents papers from the International Conference on Sustainable Civil Engineering and Architecture 2019, which was held in Ho Chi Minh City, Vietnam, from 24–26 October 2019. The conference brought together international experts from both academia and industry to share their knowledge and experiences, and to facilitate collaboration and improve cooperation in the field. The book highlights the latest advances in sustainable architecture and civil engineering, covering topics such as offshore structures, structural engineering, construction materials, and architecture.
Mechanics of Structures and Materials: Advancements and Challenges is a collection of peer-reviewed papers presented at the 24th Australasian Conference on the Mechanics of Structures and Materials (ACMSM24, Curtin University, Perth, Western Australia, 6-9 December 2016). The contributions from academics, researchers and practising engineers from Australasian, Asia-pacific region and around the world, cover a wide range of topics, including: • Structural mechanics • Computational mechanics • Reinforced and prestressed concrete structures • Steel structures • Composite structures • Civil engineering materials • Fire engineering • Coastal and offshore structures • Dynamic analysis of structures • Structural health monitoring and damage identification • Structural reliability analysis and design • Structural optimization • Fracture and damage mechanics • Soil mechanics and foundation engineering • Pavement materials and technology • Shock and impact loading • Earthquake loading • Traffic and other man-made loadings • Wave and wind loading • Thermal effects • Design codes Mechanics of Structures and Materials: Advancements and Challenges will be of interest to academics and professionals involved in Structural Engineering and Materials Science.
The proceedings of the conference is going to benefit the researchers, academicians, students and professionals in getting enlightened on latest technologies on structural mechanics, structure and infrastructure engineering. Further, work on practical applications of developed scientific methodologies to civil structural engineering will make the proceedings more interesting and useful to practicing engineers and structural designers.
Discussing the increasing need to protect civilian infrastructure and industrial facilities against unintentional loads arising from accidental impact and explosion events as well as terrorist attack, this book contains papers presented at the 15th International Conference on Structures under Shock and Impact. This successful conference series has been regularly held since it began in 1989 in Cambridge, Massachusetts. While advances have been made over this period many challenges remain, such as to develop more effective and efficient blast and impact mitigation approaches than currently exist. The primary focus remains the survivability of physical facilities and the protection of people, as well as reducing economic losses and impact on the environment, with emphasis on innovative protective technologies to support the needs of an economically growing, modern society. The application of this technology ranges from the safe transportation of people in several modes and the transportation of dangerous or combustible materials to defences against natural hazard threats such as flood, wind, storm, tsunami and earthquake. Large scale testing is prohibitive and small scale laboratory testing results in scaling uncertainties. Continuing research is therefore essential to improve knowledge on how these structures behave under a variety of load actions, some of which interact making it even more complex and difficult to define. Consequently, more use of advanced numerical simulations for load and structural response calculations is common practice in industry and research. Such calculations can directly be used in design and risk assessment calculations, but also be applied as input to more simplified design tools and design codes. Whether numerical or analytical modelling techniques are employed, experimental validation is vital for there to be acceptance of the approach to be used. The published research aims for the exchange of ideas and results to promote a better understanding of the critical issues relating to the testing behaviour, modelling and analyses of protective structures against blast and impact loading.
Unique single reference supports functional and cost-efficient designs of blast resistant buildings Now there's a single reference to which architects, designers, and engineers can turn for guidance on all the key elements of the design of blast resistant buildings that satisfy the new ASCE Standard for Blast Protection of Buildings as well as other ASCE, ACI, and AISC codes. The Handbook for Blast Resistant Design of Buildings features contributions from some of the most knowledgeable and experienced consultants and researchers in blast resistant design. This handbook is organized into four parts: Part 1, Design Considerations, sets forth basic principles, examining general considerations in the design process; risk analysis and reduction; criteria for acceptable performance; materials performance under the extraordinary blast environment; and performance verification for technologies and solution methodologies. Part 2, Blast Phenomena and Loading, describes the explosion environment, loading functions needed for blast response analysis, and fragmentation and associated methods for effects analysis. Part 3, System Analysis and Design, explains the analysis and design considerations for structural, building envelope, component space, site perimeter, and building system designs. Part 4, Blast Resistant Detailing, addresses the use of concrete, steel, and masonry in new designs as well as retrofitting existing structures. As the demand for blast resistant buildings continues to grow, readers can turn to the Handbook for Blast Resistant Design of Buildings, a unique single source of information, to support competent, functional, and cost-efficient designs.
This book presents the select proceedings of the Virtual Conference on Disaster Risk Reduction (VCDRR 2021). This book discusses various relevant topics such as Disaster resilience and Infrastructure, Risk reduction and structural measures, Evidence based approach for DRR Case studies, Numerical modelling and Constructions methods, Prevention Methods and Safety Engineering, Cross cutting issue in DRR and Infrastructure etc. The book is also a comprehensive volume on multi-hazards and their management for a sustainable built environment. This book will be useful for academicians, research scholars and industry professionals working in the area of civil engineering and disaster management.