Download Free Black Holes Theory And Observation Book in PDF and EPUB Free Download. You can read online Black Holes Theory And Observation and write the review.

This book discusses the state of the art of the basic theoretical and observational topics related to black hole astrophysics. It covers all the main topics in this wide field, from the theory of accretion disks and formation mechanisms of jet and outflows, to their observed electromagnetic spectrum, and attempts to measure the spin of these objects. Black holes are one of the most fascinating predictions of general relativity and are currently a very hot topic in both physics and astrophysics. In the last five years there have been significant advances in our understanding of these systems, and in the next five years it should become possible to use them to test fundamental physics, in particular to predict the general relativity in the strong field regime. The book is both a reference work for researchers and a textbook for graduate students.
Dive into a mind-bending exploration of the physics of black holes Black holes, predicted by Albert Einstein’s general theory of relativity more than a century ago, have long intrigued scientists and the public with their bizarre and fantastical properties. Although Einstein understood that black holes were mathematical solutions to his equations, he never accepted their physical reality—a viewpoint many shared. This all changed in the 1960s and 1970s, when a deeper conceptual understanding of black holes developed just as new observations revealed the existence of quasars and X-ray binary star systems, whose mysterious properties could be explained by the presence of black holes. Black holes have since been the subject of intense research—and the physics governing how they behave and affect their surroundings is stranger and more mind-bending than any fiction. After introducing the basics of the special and general theories of relativity, this book describes black holes both as astrophysical objects and theoretical “laboratories” in which physicists can test their understanding of gravitational, quantum, and thermal physics. From Schwarzschild black holes to rotating and colliding black holes, and from gravitational radiation to Hawking radiation and information loss, Steven Gubser and Frans Pretorius use creative thought experiments and analogies to explain their subject accessibly. They also describe the decades-long quest to observe the universe in gravitational waves, which recently resulted in the LIGO observatories’ detection of the distinctive gravitational wave “chirp” of two colliding black holes—the first direct observation of black holes’ existence. The Little Book of Black Holes takes readers deep into the mysterious heart of the subject, offering rare clarity of insight into the physics that makes black holes simple yet destructive manifestations of geometric destiny.
This book addresses graduate students in the first place and is meant as a modern compendium to the existing texts on black hole astrophysics. The authors present in pedagogically written articles our present knowledge on black holes covering mathematical models including numerical aspects and physics and astronomical observations as well. In addition, in their write-up of a panel discussion the participants of the school address the existence of black holes consenting that it has by now been verified with certainty.
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
A conference on `Observational Evidence for Black Holes in the Universe' was held in Calcutta during January 10-17, 1998. This was the first time that experts had gathered to debate and discuss topics such as: Should black holes exist? If so, how to detect them? Have we found them? This book is the essence of this gathering. Black holes are enigmatic objects since it is impossible to locate them through direct observations. State-of-the-art theoretical works and numerical simulations have given us enough clues of what to look for. Observations, from both ground and space-based missions, have been able to find these tell-tale signatures. This book is a compendium of our present knowledge about these theories and observations. Combined, they give a thorough idea of whether black holes, galactic as well as extragalactic, have been detected or not. Forty-one experts of the subject have contributed to this volume to make it the most comprehensive to date.
Einstein's gravitational theory predicts the existence of black holes, objects so dense that light cannot escape their gravitational field. Several types of black hole may exist: mini black holes, stellar black holes, and supermassive black holes with millions of solar masses. Experimental evidence for the existence of stellar and supermassive black holes continues to mount, so what was once considered to be science! fiction, has now become reality. This book gives a broad comprehensive introduction and, at the same time, an overview of all aspects of black hole physics. It should be comprehensible to all students in physics, astrophysics, and mathematics. A well-illustrated introduction, selected exercises, and a number of pictures and diagrams help to make the content more accessible. The text discusses observations of black holes in galactic centres and binary systems, a theory of accretion disks, the general relativistic description of black holes, as well as the thermodynamics of black holes and Hawking radiation.
Measuring the spin distribution of supermassive black holes is of critical importance for understanding how these black holes and their host galaxies form and evolve over time, yet this type of study is only in its infancy. This brief describes how astronomers measure spin in supermassive black holes using X-ray spectroscopy. It also reviews the constraints that have been placed on the spin distribution in local, bright active galaxies over the past six years, and the cosmological implications of these constraints. Finally, it summarizes the open questions that remain in this exciting new field of research and points toward future discoveries soon to be made by the next generation of space-based observatories.
This book addresses graduate students in the first place and is meant as a modern compendium to the existing texts on black hole astrophysics. The authors present in pedagogically written articles our present knowledge on black holes covering mathematical models including numerical aspects and physics and astronomical observations as well. In addition, in their write-up of a panel discussion the participants of the school address the existence of black holes consenting that it has by now been verified with certainty.
A comprehensive summary of progress made during the past decade on the theory of black holes and relativistic stars, this collection includes discussion of structure and oscillations of relativistic stars, the use of gravitational radiation detectors, observational evidence for black holes, cosmic censorship, numerical work related to black hole collisions, the internal structure of black holes, black hole thermodynamics, information loss and other issues related to the quantum properties of black holes, and recent developments in the theory of black holes in the context of string theory. Volume contributors: Valeria Ferrari, John L. Friedman, James B. Hartle, Stephen W. Hawking, Gary T. Horowitz, Werner Israel, Roger Penrose, Martin J. Rees, Rafael D. Sorkin, Saul A. Teukolsky, Kip S. Thorne, and Robert M. Wald.
'If you feel you are in a black hole, don't give up. There's a way out' What is inside a black hole? Is time travel possible? Throughout his extraordinary career, Stephen Hawking expanded our understanding of the universe and unravelled some of its greatest mysteries. In What Is Inside a Black Hole? Hawking takes us on a journey to the outer reaches of our imaginations, exploring the science of time travel and black holes. 'The best most mind-bending sort of physics' The Times Brief Answers, Big Questions: this stunning paperback series offers electrifying essays from one of the greatest minds of our age, taken from the original text of the No. 1 bestselling Brief Answers to the Big Questions.