Download Free Bipolar Quadripartitioned Single Valued Neutrosophic Sets Book in PDF and EPUB Free Download. You can read online Bipolar Quadripartitioned Single Valued Neutrosophic Sets and write the review.

The notion of simple bipolar quadripartition is presented valuable neutrosophi set. Some basic theoretic terminologies, operations and properties of bipolar quadripartitioned single valued neutrosophic set are given here.
Here bipolar quadripartitioned single valued neutrosophic rough (BQSVNR) set is introduced. Some basic set theoretic terminologies like constant BQSVNR set, subsethood of two BQSVNR sets are shown. Algebraic operations like union, intersection and complement have also been defined. Different types of measure like similarity measure, quasi similarity measure and distance measures between two BQSVNR sets have been discussed with their properties. Again various measures of similarity namely distance based similarity measure, cosine similarity measure, membership function based similarity measure are introduced in this paper. A medical diagonasis problem has been solved using similarity measure at the end.
In this paper, a definition of quadripartitioned single valued bipolar neutrosophic set (QSVBNS) is introduced as a generalization of both quadripartitioned single valued neutrosophic sets (QSVNS) and bipolar neutrosophic sets (BNS). There is an inherent symmetry in the definition of QSVBNS. Some operations on them are defined and a set theoretic study is accomplished. Various similarity measures and distance measures are defined on QSVBNS. An algorithm relating to multi-criteria decision making problem is presented based on quadripartitioned bipolar weighted similarity measure. Finally, an example is shown to verify the flexibility of the given method and the advantage of considering QSVBNS in place of fuzzy sets and bipolar fuzzy sets.
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities as well as their interactions with different ideational spectra. In all classical algebraic structures, the law of compositions on a given set are well-defined, but this is a restrictive case because there are situations in science where a law of composition defined on a set may be only partially defined and partially undefined, which we call NeutroDefined, or totally undefined, which we call AntiDefined. Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebra introduces NeutroAlgebra, an emerging field of research. This book provides a comprehensive collection of original work related to NeutroAlgebra and covers topics such as image retrieval, mathematical morphology, and NeutroAlgebraic structure. It is an essential resource for philosophers, mathematicians, researchers, educators and students of higher education, and academicians.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Parameter Reduction of Neutrosophic Soft Sets and Their Applications, Geometric Programming (NGP) Problems Subject to (⋁,.) Operator; the Minimum Solution, Ngpr Homeomorphism in Neutrosophic Topological Spaces, Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In this study, we give some concepts concerning the neutrosophic sets, single valued neutrosophic sets, interval-valued neutrosophic sets, bipolar neutrosophic sets, neutrosophic hesitant fuzzy sets, inter-valued neutrosophic hesitant fuzzy sets, refined neutrosophic sets, bipolar neutrosophic refined sets, multi-valued neutrosophic sets, simplified neutrosophic linguistic sets, neutrosophic over/off/under sets, rough neutrosophic sets, rough bipolar neutrosophic sets, rough neutrosophic hyper-complex set, and their basic operations. Then we introduce triangular neutrosophic numbers, trapezoidal neutrosophic fuzzy number and their basic operations. Also some comparative studies between the existing neutrosophic sets and neutrosophic number are provided.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
This contributed volume book aims at discussing transdisciplinary approaches to address common problems. By working transdisciplinarily, researchers coming from different disciplines can work jointly using a shared conceptual framework bringing together disciplinary-specific theories and concepts. There are numerous barriers that can obstruct effective communication between different cultures, communities, religions and geographies. This book shows that through bringing together different disciplines, researchers not only can surpass these barriers but can effectively produce new venues of thought that can positively affect the development and evolution of research and education. The book discusses new and emerging applications of knowledge produced by transdisciplinary efforts and covers the interplay of many disciplines, including agriculture, economics, mathematics, engineering, industry, information technology, marketing, nanoscience, neuroscience, space exploration, human-animal relationships, among others. Consequently, it also covers the relationship between art and science, as one of the most remarkable transdisciplinary approaches that paves the way for new methods in engineering, design, architecture and many other fields.