Download Free Bipolar Neutrosophic Refined Sets And Their Applications In Medical Diagnosis Book in PDF and EPUB Free Download. You can read online Bipolar Neutrosophic Refined Sets And Their Applications In Medical Diagnosis and write the review.

This paper proposes concept of bipolar neutrosophic refined set and its some operations. Firstly, a score certainty and accuracy function to compare the bipolar neutrosophic refined information is defined. Secondly, to aggregate the bipolar neutrosophic refined information, a bipolar neutrosophic refined weighted average operator and a bipolar neutrosophic refined weighted geometric operator is developed.
In this study, we give some concepts concerning the neutrosophic sets, single valued neutrosophic sets, interval-valued neutrosophic sets, bipolar neutrosophic sets, neutrosophic hesitant fuzzy sets, inter-valued neutrosophic hesitant fuzzy sets, refined neutrosophic sets, bipolar neutrosophic refined sets, multi-valued neutrosophic sets, simplified neutrosophic linguistic sets, neutrosophic over/off/under sets, rough neutrosophic sets, rough bipolar neutrosophic sets, rough neutrosophic hyper-complex set, and their basic operations.
Bipolar neutrosophic matrices (BNM) are obtained by bipolar neutrosophic sets. Each bipolar neutrosophic number represents an element of the matrix. The matrices are representable multi-dimensional arrays (3D arrays). The arrays have nested list data type. Some operations, especially the composition is a challenging algorithm in terms of coding because there are so many nested lists to manipulate. This paper presents a Python tool for bipolar neutrosophic matrices. The advantage of this work, is that the proposed Python tool can be used also for fuzzy matrices, bipolar fuzzy matrices, intuitionistic fuzzy matrices, bipolar intuitionistic fuzzy matrices and single valued neutrosophic matrices.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors (alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali, Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao, Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas Kazimieras Zavadskas.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc
Contributors to current issue (listed in papers' order): Ferhat Taș, Selçuk Topal, P. Iswarya, Dr. K. Bageerathi, I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, R. Narmada Devi, Md. Hanif Page, R. Cabezas Padilla, J. González Ruiz, M. Villegas Alava, M. Leyva Vázquez, Okpako Abugor Ejaita, Asagba P.O., F. Smarandache, Surapati Pramanik, Shyamal Dalapati, Shariful Alam, Tapan Kumar Roy, Eman.M.El-Nakeeb, Hewayda ElGhawalby, A.A. Salama, S.A.El-Hafeez, Kanika Bhutani, Swati Aggarwal, N. Abbas, Y. Chibani, B. Hadjadji, Z. A. Omar, Suriana Alias, Daud Mohamad, Adibah Shuib, E. J. Henríquez Antepara, J. E. Arízaga Gamboa, M. R. Campoverde Méndez, M. E. Peña González, Nguyen Xuan Thao, Nguyen Van Dinh. Papers in current issue (listed in papers' order): Bèzier Curve Modeling for Neutrosophic Data Problem; A Study on Neutrosophic Frontier and Neutrosophic Semi-frontier in Neutrosophic Topological Spaces; On Some New Notions and Functions in Neutrosophic Topological Spaces; Neutrosophic Baire Spaces; A Knowledge-based Recommendation Framework using SVN Numbers; An Improved Framework for Diagnosing Confusable Diseases Using Neutrosophic Based Neural Network; Compact Open Topology and Evaluation Map via Neutrosophic Sets; On Neutrosophic Semi-Supra Open Set and Neutrosophic Semi-Supra Continuous Functions; Neutrosophic Cubic MCGDM Method Based on Similarity Measure; Neutrosophic Crisp Mathematical Morphology; Neutrosophic Rough Soft Set - A Decision Making Approach to Appendicitis Problem; PCR5 and Neutrosophic Probability in Target Identification (revisited); Rough Neutrosophic Multisets; Competencies Interdepencies Analysis based on Neutrosophic Cognitive Mapping; Support-Neutrosophic Set: A New Concept in Soft Computing.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.