Download Free Bipolar Neutrosophic Planar Graphs Book in PDF and EPUB Free Download. You can read online Bipolar Neutrosophic Planar Graphs and write the review.

Fuzzy graph theory is used for solving real-world problems in different fields, including theoretical computer science, engineering, physics, combinatorics and medical sciences. In this paper, we present conepts of bipolar neutrosophic multigraphs, bipolar neutrosophic planar graphs, bipolar neutrosophic dual graphs, and study some of their related properties. We also describe applications of bipolar neutrosophic graphs in road network and electrical connections.
In this research study, we introduce the concept of bipolar single-valued neutrosophic graph structures. We discuss certain notions of bipolar single-valued neutrosophic graph structures with examples. We present some methods of construction of bipolar single-valued neutrosophic graph structures. We also investigate some of their prosperities.
In this paper, we discuss spacial types of bipolar neutrosophic graphs, including edge irregular bipolar neutrosophic graphs and totally edge irregular bipolar neutrosophic graphs. We illustrate these types by several examples and investigate some of their interesting properties.
We apply the concept of single-valued neutrosophic sets to multigraphs, planar graphs and dual graphs. We introduce the notions of single-valued neutrosophic multigraphs, single-valued neutrosophic planar graphs, and single-valued neutrosophic dual graphs. We illustrate these concepts with examples. We also investigate some of their properties.
This book addresses single-valued neutrosophic graphs and their applications. In addition, it introduces readers to a number of central concepts, including certain types of single-valued neutrosophic graphs, energy of single-valued neutrosophic graphs, bipolar single-valued neutrosophic planar graphs, isomorphism of intuitionistic single-valued neutrosophic soft graphs, and single-valued neutrosophic soft rough graphs. Divided into eight chapters, the book seeks to remedy the lack of a mathematical approach to indeterminate and inconsistent information. Chap. 1 presents a concise review of single-valued neutrosophic sets, while Chap. 2 explains the notion of neutrosophic graph structures and explores selected properties of neutrosophic graph structures. Chap. 3 discusses specific bipolar neutrosophic graphs. Chap. 4 highlights the concept of interval-valued neutrosophic graphs, while Chap. 5 presents certain notions concerning interval-valued neutrosophic graph structures. Chap. 6 addresses the concepts of rough neutrosophic digraphs and neutrosophic rough digraphs. Chap. 7 focuses on the concepts of neutrosophic soft graphs and intuitionistic neutrosophic soft graphs, before Chap. 8 rounds out the book by considering neutrosophic soft rough graphs.
Bipolar neutrosophic matrices (BNM) are obtained by bipolar neutrosophic sets. Each bipolar neutrosophic number represents an element of the matrix. The matrices are representable multi-dimensional arrays (3D arrays). The arrays have nested list data type. Some operations, especially the composition is a challenging algorithm in terms of coding because there are so many nested lists to manipulate. This paper presents a Python tool for bipolar neutrosophic matrices. The advantage of this work, is that the proposed Python tool can be used also for fuzzy matrices, bipolar fuzzy matrices, intuitionistic fuzzy matrices, bipolar intuitionistic fuzzy matrices and single valued neutrosophic matrices.
This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.
Graph theory has a significant impact and is crucial in the structure of many real-life situations. To simulate uncertainty and ambiguity, many extensions of graph theoretical notions were created. Planar graphs play a vital role inmodelling which has the property of non-crossing edges. Although crossing edges benefit, they have some drawbacks, which paved the way for the introduction of planar graphs. The overall purpose of the study is to contribute to the conceptual development of the Pythagorean Neutrosophic graph. The basic methodology of our research is the incorporation of the analogous concepts of planar graphs in the Pythagorean Neutrosophic graphs. The significant finding of our research is the introduction of Pythagorean Neutrosophic Planar graphs, a conceptual blending of Pythagorean Neutrosophic and Planar graphs. The idea of Pythagorean Neutrosophic multigraphs and dual graphs are also introduced to deal with the ambiguous situations. This paper investigates the Pythagorean Neutrosophic planar values, which form the edges of the Pythagorean neutrosophic graphs. The concept of Pythagorean Neutrosophic dual graphs, isomorphism, co-weak and weak isomorphism have also been explored for Pythagorean Neutrosophic planar graphs. A decision-making algorithm was proposed with a numerical illustration by using the Pythagorean Neutrosophic fuzzy graph.
This book addresses new concepts, methods, algorithms, modeling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, linear problems and new information related to optimization for the topic from the theoretical and applied viewpoints of neutrosophic sets and logic. The book is an innovatory of new tools and procedures, such as: Neutrosophic Statistical Tests and Dependent State Samplings, Neutrosophic Probabilistic Expert Systems, Neutrosophic HyperSoft Set, Quadripartitioned Neutrosophic Cross-Entropy, Octagonal and Spherical and Cubic Neutrosophic Numbers used in machine learning. It highlights the process of neutrosofication {which means to split the universe into three parts, two opposite ones (Truth and Falsehood), and an Indeterminate or neutral one (I) in between them}. It explains Three-Ways Decision, how the universe set is split into three different distinct areas, in regard to the decision process, representing: Acceptance, Noncommitment, and Rejection, respectively. The Three-Way Decision is used in the Neutrosophic Linguistic Rough Set, which has never been done before.
This book describes a set of hybrid fuzzy models showing how to use them to deal with incomplete and/or vague information in different kind of decision-making problems. Based on the authors’ research, it offers a concise introduction to important models, ranging from rough fuzzy digraphs and intuitionistic fuzzy rough models to bipolar fuzzy soft graphs and neutrosophic graphs, explaining how to construct them. For each method, applications to different multi-attribute, multi-criteria decision-making problems, are presented and discussed. The book, which addresses computer scientists, mathematicians, and social scientists, is intended as concise yet complete guide to basic tools for constructing hybrid intelligent models for dealing with some interesting real-world problems. It is also expected to stimulate readers’ creativity thus offering a source of inspiration for future research.