Download Free Biotic Stress Resistance In Millets Book in PDF and EPUB Free Download. You can read online Biotic Stress Resistance In Millets and write the review.

Biotic Stress Resistance in Millets presents an important guide to the disease and pest-related challenges of this vital food crop. Biotic stresses are one of the major constraints for millet production, but newly emerging and forward-thinking problems with disease and insect pests are likely to increase as a result of changing weather, making this an imperative book on best practices. Current strategies are mainly through the development of resistant cultivars, as the use of chemicals is cost-prohibitive to many of those producing millet in developing countries where it is of most value as a food source. This book explores non-chemical focused options for improving plant resistance and protecting crop yield. This single-volume reference will be important for researchers, teachers and students in the disciplines of Agricultural Entomology, Plant protection, Resistance Plant Breeding and Biotechnological pest management. - Establishes basic concepts of host resistance providing foundational insight - Synthesizes past biotic stress resistance research with the latest findings to orient research for future strategies for plant protection - Focuses exclusively on host plant resistance on all major diseases and pests of millets - Presents data and strategies that are globally applicable as millets gain importance as a health food
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.
This book presents abiotic stresses that cause crop damage in the range of 6-20%. Understanding the interaction of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FPNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The nine chapters each dedicated to a cereal crop in this volume are deliberate on different types of abiotic stresses and their effects on and interaction with crop plants; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; are brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; elucidate on the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. - Provides a single-volume resource on the global research work on grain cereals genetics and genomics - Presents information for effectively managing and utilizing the genetic resources of this core food supply source - Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets
The impact of global climate change on crop production has emerged as a major research priority during the past decade. Understanding abiotic stress factors such as temperature and drought tolerance and biotic stress tolerance traits such as insect pest and pathogen resistance in combination with high yield in plants is of paramount importance to counter climate change related adverse effects on the productivity of crops. In this multi-authored book, we present synthesis of information for developing strategies to combat plant stress. Our effort here is to present a judicious mixture of basic as well as applied research outlooks so as to interest workers in all areas of plant science. We trust that the information covered in this book would bridge the much-researched area of stress in plants with the much-needed information for evolving climate-ready crop cultivars to ensure food security in the future.
This book is the first comprehensive compilation of deliberations on domestication, genetic and genomic resources, breeding, genetic diversity, molecular maps & mapping of important biotic stress as well as nutritional quality traits, genome sequencing, comparative genomics, functional genomics and genetic transformation. The economic, nutritional and health benefits especially antioxidants mediated antiaging effects of finger millet are also discussed. It also presents the input use efficiency, wide adaptation, post-harvest processing and value addition of the crop. Altogether, the book contains about 300 pages over 16 chapters authored by globally reputed experts on the relevant field in this crop. This book is useful to the students, teachers and scientists in the academia and relevant private companies interested in genetics, pathology, molecular genetics and breeding, genetic engineering, structural and functional genomics and nutritional quality aspects of the crop. This book is also useful to seed and pharmaceutical industries.
Millets and Pseudo Cereals is the first comprehensive resource to focus on the potential crop improvements through genetic enhancements. The choice of food crop for a region is primarily determined by the conditions of climate and soil. Once labelled as orphan crops, millets and pseudo-cereals are now known as miracle grains due to their adaptation to harsh conditions and high nutritional quality. Small millets and pseudo-cereals are now seen to occupy special niches through their ability to adapt to challenging conditions. These crops have a comparative advantage in marginal lands where they withstand stress conditions and contribute to sustainable production. They also contribute to the diversity-richness and production stability of agro-ecosystems. Millets include sorghum, pearl millet, finger millet, foxtail millet, proso millet, barnyard millet, little millet and kodo millet while the other group which are not cereals but consumed as cereals and generally referred as pseudo-cereals comprises of grain amaranths, buckwheat and chenopods. Millets and Pseudo Cereals presents current information on the genetic architecture of important economic traits and the genomic resources for gene enabled breeding. This compilation contains information on the global status, available germplasm resources, nutritional value, breeding advancements, genomics applications and sustainability of agriculture through millets and pseudo-cereals cultivation. This book is a valuable resource for those conducting research and exploring new areas for advancing crop genetic understanding. - Explores the current challenges of pseudo-cereal production and how that can be overcome by developing genetic and breeding resources using appropriate germplasm - Provides holistic information on millets and pseudo-cereals - Features global perspectives from an international contributing team of authors
The abiotic stresses like drought, temperature, cold, salinity, heavy metals etc. affect a great deal on the yield performance of the agricultural crops. To cope up with these challenges, plant breeding programs world-wide are focussing on the development of stress tolerant varieties in all crop species. Significant genomic advances have been made for abiotic stress tolerance in various crop species in terms of availability of molecular markers, QTL mapping, genome-wide association studies (GWAS), genomic selection (GS) strategies, and transcriptome profiling. The broad-range of articles involving genomics and breeding approaches deepens our existing knowledge about complex traits. The chapters are written by authorities in their respective fields. This book provides comprehensive and consolidated account on the applications of the most recent findings and the progress made in genomics assisted breeding for tolerance to abiotic stresses in many important major crop species with a focus on applications of modern strategies for sustainable agriculture. The book is especially intended for students, molecular breeders and scientists working on the genomics-assisted genetic improvement of crop species for abiotic stress tolerance.
This edited book covers all aspects of omics approaches used for the varietal improvement of millets in changing climatic conditions. Millets are the collection of small-grained cereal grasses, that are grown for human carbohydrate needs. They are among the oldest crops, mainly divided into two groups – Major and small millets based on seed size. Small millets are earlier considered orphan crops, but recently due to their nutritional values, they are getting importance in cultivation. This book explores the genomics, transcriptomics, proteomics, metabolomics, bioinformatics, and other omics tools that are being widely used to get a clear understanding of mechanistic approaches taken by plant genes to tolerate stress. Various reports are published based on field breeding on these crops, and recently the genome of some of the small millets is released, and many omics studies are published related to its application in varietal improvements. This book reviewed all those recent studies and is of interest to research students, plant breeding scientists, teachers that are working in agriculture and plant biotech universities. Along with this, the book serves as reference material for undergraduate and graduate students of agriculture, and biotechnology. National and international agricultural scientists, policymakers will also find this to be a useful read.
Millets and sorghum are extremely important crops in many developing nations and because of the ability of many of them to thrive in low-moisture situations they represent some exciting opportunities for further development to address the continuing and increasing impact of global temperature increase on the sustainability of the world’s food crops. The main focus of this thorough new book is the potential for crop improvement through new and traditional methods, with the book’s main chapters covering the following crops: sorghum, pearl millet, finger millet, foxtail milet, proso millet, little millet, barnyard millet, kodo millet, tef and fonio. Further chapters cover pests and diseases, nutritional and industrial importance, novel tools for improvement, and seed systems in millets. Millets and Sorghum provides full and comprehensive coverage of these crucially important crops, their biology, world status and potential for improvement, and is an essential purchase for crop and plant scientists, and food scientists and technologists throughout the developed and developing world. All libraries in universities and research establishment where biological and agricultural sciences are studied and taught should have copies of this important book on their shelves.