Download Free Biotechnology For The Environment Strategy And Fundamentals Book in PDF and EPUB Free Download. You can read online Biotechnology For The Environment Strategy And Fundamentals and write the review.

At the dawn of the 21st century, biotechnology is emerging as a key enabling technology for sustainable environmental protection and stewardship. Biotechnology for the Environment: Strategy and Fundamentals captures the dynamism of environmental biotechnology as it addresses the molecular functioning of microorganisms as cleanup agents, their communal interactions in natural and polluted ecosystems, and the foundations of practical bioremediation processes. Chapters on biological pollution control in the chemical industry, biodegradation of persistent molecules (halogenated compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides, detergents, etc.), microbial diversity with impact on global change, bioaugmentation strategies, and sensors for ecotoxicological monitoring, will be of value to environmental scientists, engineers, and decision-makers involved in the development, evaluation, or implementation of biological treatment systems. For information on Soil Remediation, see Focus on Biotechnology volume 3B, and for information on Waste Water and Waste Gas Handling, see Focus on Biotechnology volume 3C.
This textbook on Environmental Biotechnology not only presents an unbiased overview of the practical biological approaches currently employed to address environmental problems, but also equips readers with a working knowledge of the science that underpins them. Starting with the fundamentals of biotechnology, it subsequently provides detailed discussions of global environmental problems including microbes and their interaction with the environment, xenobiotics and their remediation, solid waste management, waste water treatment, bioreactors, biosensors, biomining and biopesticides. This book also covers renewable and non-renewable bioenergy resources, biodiversity and its conservation, and approaches to monitoring biotechnological industries, genetically modified microorganism and foods so as to increase awareness. All chapters are written in a highly accessible style, and each also includes a short bibliography for further research. In summary this textbook offers a valuable asset, allowing students, young researchers and professionals in the biotechnology industry to grasp the basics of environmental biotechnology.
The application of biologically-engineered solutions toenvironmental problems has become far more readily acceptable andwidely understood. However there remains some uncertainty amongstpractitioners regarding how and where the microscopic, functionallevel fits into the macroscopic, practical applications. It isprecisely this gap which the book sets out to fill. Dividing the topic into logical strands covering pollution,waste and manufacturing, the book examines the potential forbiotechnological interventions and current industrial practice,with the underpinning microbial techniques and methods described,in context, against this background. Each chapter is supported by located case studies from a rangeof industries and countries to provide readers with an overview ofthe range of applications for biotechnology. Essential reading for undergraduates and Masters studentstaking modules in Biotechnology or Pollution Control as part ofEnvironmental Science, Environmental Management or EnvironmentalBiology programmes. It is also suitable for professionals involvedwith water, waste management and pollution control.
The book aims to provide a comprehensive view of advanced environmental approaches for wastewater treatment, heavy metal removal, pesticide degradation, dye removal, waste management, microbial transformation of environmental contaminants etc. With advancements in the area of Environmental Biotechnology, researchers are looking for the new opportunities to improve quality standards and environment. Recent technologies have given impetus to the possibility of using renewable raw materials as a potential source of energy. Cost intensive and eco-friendly technology for producing high quality products and efficient ways to recycle waste to minimize environmental pollution is the need of hour. The use of bioremediation technologies through microbial communities is another viable option to remediate environmental pollutants, such as heavy metals, pesticides and dyes etc. Since physico-chemical technologies employed in the past have many potential drawbacks including higher cost, and lower sustainability. So there is need of efficient biotechnological alternatives to overcome increasing environmental pollution. Hence, there is a need for environmental friendly technologies that can reduce the pollutants causing adverse hazards on humans and surrounding environment.
Current Developments in Biotechnology and Bioengineering: Emerging Organic Micropollutants summarizes the current knowledge of emerging organic micropollutants in wastewater and the possibilities of their removal/elimination. This book attempts a thorough and exhaustive discussion on ongoing research and future perspectives on advanced treatment methods and future directions to maintain and protect the environment through microbiological, nanotechnological, application of membrane technology, molecular biological and by policymaking means. In addition, the book includes the latest developments in biotechnology and bioengineering pertaining to various aspects in the field of emerging organic micropollutants, including their sources, health effects and environmental impacts.
At the dawn of the 21st century, biotechnology is emerging as a key enabling technology for sustainable environmental protection and stewardship. This text captures the dynamism of environmental biotechnology as it addresses the molecular functioning of micro-organisms as cleanup agents, their communal interactions in natural and polluted ecosystems, and the foundations of practical bioremediation processes.
Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.
The book discusses the techniques of plant tissue culture, the fundamental basis for the development of innovative crop improvement strategies, and emerging paradigms in plant genome research. According to the latest syllabus of leading national and international universities, the book, in its second edition, introduces two new chapters on “Cell Biology and Cell Culture” and “Recent Trends in Crop Production and Management”. Answers of different Questions especially laboratory techniques and instrumental analysis in Agricultural Biotechnology are included and provide a basic background to some of the techniques used for improving agricultural industries, as well as these also provide insights into advanced aspects of applications in agriculture. The book caters the needs of students of higher studies at different levels in colleges, universities, and research institutes. The book is suitable for the undergraduate and postgraduate students of Agricultural Biotechnology. Also, it is very useful to researchers and agronomists. NEW TO THE EDITION The new edition of the book includes: 1. Updated text according to the latest syllabus of leading national and international universities. 2. Two new chapters on “Cell Biology and Cell Culture” and “Recent Trends in Crop Production and Management”. 3. Different Questions with Answers to better understand the techniques used for improving agricultural industries and advanced aspects of applications in agriculture. TARGET AUDIENCE • UG and PG (Agricultural Biotechnology)
The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.