Download Free Biotechnological Production Of Plant Secondary Metabolites Book in PDF and EPUB Free Download. You can read online Biotechnological Production Of Plant Secondary Metabolites and write the review.

Thousands of secondary metabolites are produced by plants to withstand unfavourable environmental conditions and are important molecules for nutraceutical, agro, cosmetic and pharmaceutical industries, etc. Harvesting of plants for the extraction of these important metabolites can threaten the plant germplasm, and various medicinally important plants are at the verge of extinction. Based on need, various methods and strategies were developed and followed by researchers from time to time to save the plant germplasm and produce important secondary metabolites efficiently to meet their growing demands. Biotechnological Approaches to Enhance Plant Secondary Metabolites: Recent Trends and Future Prospects provides a comprehensive introduction and review of state-of-the-art biotechnological tools in this field of research at global level. The methodologies are highlighted by real data examples in both in vitro and in vivo level studies. The book: • Highlights and provides overviews of the synthesis, classification, biological function and medicinal applications of the recent advancements for the enhanced production of novel secondary metabolites in plants • Provides an overview of the role of induced mutation, salinity stress and brassinosteroids impact to increase the secondary metabolic contents in plants and suggests an increase in enzymatic activity in plants could be due to various point mutations, which in turn could play a role at transcriptome levels • Discusses the significant role of endophytes to enhance the contents of plant secondary metabolites • Alternatively, suggests the urgent need to set up the standard operating procedures using hydroponics system of cultivation for significant enhancement of secondary metabolite contents • Enlists various in vitro techniques to enhance plant secondary metabolites contents using plant tissue culture approaches • Provides a systematic overview of state-of-the-art biotechnological tools CRISPER Cas9 and RNAi to enhance the plant secondary metabolite contents • Recommends CRISPER Cas9 technology over RNAi, ZFNs and TALENs because of its relatively simple and high precision method with an easily programmable tool This serves as a reference book for the researchers working in the field of plant secondary metabolites and pharmaceutical industries at global level.
This reference work provides a comprehensive review of cell and tissue differentiation and its role in the formation of specific secondary metabolites. Divided into five sections, this book covers the main cellular processes involved in the biosynthesis of secondary metabolites. Chapters from expert contributors offer specific case studies of cell and tissue differentiation, examines secondary metabolites in shoot and root cultures, and present new scientific insights and original technologies with applications in medicinal plants and in plant biotechnology. Students, scholars and researchers with an interest in the fields of botany, agriculture, pharmacy, biotechnology and phytochemistry will find this book an important account. This book will also engage professionals working in plant-based industry.
This book consists of an introductory overview of secondary metabolites, which are classified into four main sections: microbial secondary metabolites, plant secondary metabolites, secondary metabolites through tissue culture technique, and regulation of secondary metabolite production. This book provides a comprehensive account on the secondary metabolites of microorganisms, plants, and the production of secondary metabolites through biotechnological approach like the plant tissue culture method. The regulatory mechanisms of secondary metabolite production in plants and the pharmaceutical and other applications of various secondary metabolites are also highlighted. This book is considered as necessary reading for microbiologists, biotechnologists, biochemists, pharmacologists, and botanists who are doing research in secondary metabolites. It should also be useful to MSc students, MPhil and PhD scholars, scientists, and faculty members of various science disciplines.
This book provides new information relating recent advances made in the field of plant secondary products. Besides the updation of chapters this edition also includes chapters on secondary metabolites of microorganisms (fungi and lichen).
Covers the structurally diverse secondary metabolites of medicinal plants, including their ethnopharmacological properties, biological activity, and production strategies Secondary metabolites of plants are a treasure trove of novel compounds with potential pharmaceutical applications. Consequently, the nature of these metabolites as well as strategies for the targeted expression and/or purification is of high interest. Regarding their biological and pharmacological activity and ethnopharmacological properties, this book offers a comprehensive treatment of 100 plant species, including Abutilon, Aloe, Cannabis, Capsicum, Jasminum, Malva, Phyllanthus, Stellaria, Thymus, Vitis, Zingiber, and more. It also discusses the cell culture conditions and various strategies used for enhancing the production of targeted metabolites in plant cell cultures. Secondary Metabolites of Medicinal Plants: Ethnopharmacological Properties, Biological Activity and Production Strategies is presented in four parts. Part I provides a complete introduction to the subject. Part II looks at the ethnomedicinal and pharmacological properties, chemical structures, and culture conditions of secondary metabolites. The third part examines the many strategies of secondary metabolites production, including: biotransformation; culture conditions; feeding of precursors; genetic transformation; immobilization; and oxygenation. The last section concludes with an overview of everything learned. -Provides information on cell culture conditions and targeted extraction of secondary metabolites confirmed by relevant literature -Presents the structures of secondary metabolites of 100 plant species together with their biological and pharmacological activity -Discusses plant species regarding their distribution, habitat, and ethnopharmacalogical properties -Presents strategies of secondary metabolites production, such as organ culture, pH, elicitation, hairy root cultures, light, and mutagenesis Secondary Metabolites of Medicinal Plants is an important book for students, professionals, and biotechnologists interested in the biological and pharmacological activity and ethnopharmacological properties of plants.
Plant secondary metabolism is an economically important source of fine chemicals, such as drugs, insecticides, dyes, flavours, and fragrances. Moreover, important traits of plants such as taste, flavour, smell, colour, or resistance against pests and diseases are also related to secondary metabolites. The genetic modification of plants is feasible nowadays. What does the possibility of engineering plant secondary metabolite pathways mean? In this book, firstly a general introduction is given on plant secondary metabolism, followed by an overview of the possible approaches that could be used to alter secondary metabolite pathways. In a series of chapters from various authorities in the field, an overview is given of the state of the art for important groups of secondary metabolites. No books have been published on this topic so far. This book will thus be a unique source of information for all those involved with plants as chemical factories of fine chemicals and those involved with the quality of food and ornamental plants. It will be useful in teaching graduate courses in the field of metabolic engineering in plants.
Current Developments in Biotechnology and Bioengineering: Current Advances in Solid-State Fermentation provides knowledge and information on solid-state fermentation involving the basics of microbiology, biochemistry, molecular biology, genetics and principles of genetic engineering, metabolic engineering and biochemical engineering. This volume of the series is on Solid-State fermentation (SSF), which would cover the basic and applied aspects of SSF processes, including engineering aspects such as design of bioreactors in SSF. The book offers a pool of knowledge on biochemical and microbiological aspects as well as chemical and biological engineering aspects of SSF to provide an integrated knowledge and version to the readers. - Provides state-of-the-art information on basic and fundamental principles of solid-state fermentation - Includes key features for the education and understanding of biotechnology education and R&D, in particular on SSF - Lists fermentation methods for the production of a wide variety of enzymes and metabolites - Provides examples of the various industrial applications of enzymes in solid state fermentation
The increase in global population, urbanization and industrialization is resulting in the conversion of cultivated land into wasteland. Providing food from these limited resources to an ever-increasing population is one of the biggest challenges that present agriculturalists and plant scientists are facing. Environmental stresses make this situation even graver. Plants on which mankind is directly or indirectly dependent exhibit various mechanisms for their survival. Adaptability of the plants to changing environment is a matter of concern for plant biologists trying to reach the goal of food security. Despite the induction of several tolerance mechanisms, sensitive plants often fail to withstand these environmental extremes. Using new technological approaches has become essential and imperative. Plant-Environment Interaction: Responses and Approaches to Mitigate Stress throws light on the changing environment and the sustainability of plants under these conditions. It contains the most up-to-date research and comprehensive detailed discussions in plant physiology, climate change, agronomy and forestry, sometimes from a molecular point of view, to convey in-depth understanding of the effects of environmental stress in plants, their responses to the environment, how to mitigate the negative effects and improve yield under stress. This edited volume is written by expert plant biologists from around the world, providing invaluable knowledge to graduate and undergraduate students in plant biochemistry, food chemistry, plant physiology, molecular biology, plant biotechnology, and environmental sciences. This book updates scientists and researchers with the very latest information and sustainable methods used for stress tolerance, which will also be of considerable interest to plant based companies and institutions concerned with the campaign of food security.
Natural compounds obtained from plants represent a tremendous global market due to their use as food additives, cosmetics, in agriculture and in pharmaceuticals. This book provides up-to-date information on various strategies and methods for producing compounds of interest. Leading researchers discuss the latest advances in environmentally friendly natural compound production from plants, making the book a valuable resource for biotechnologists, pharmacists, food technologists and researchers working in the medical and healthcare industries.