Download Free Biophysical Models And Applications In Ecosystem Analysis Book in PDF and EPUB Free Download. You can read online Biophysical Models And Applications In Ecosystem Analysis and write the review.

"The past five decades have witnessed a rapid growth of computer models for simulating ecosystem functions and dynamics. This has been fueled by the availability of remote sensing data, computation capability, and cross-disciplinary sciences. These models contain many sub-modules for simulating different processes and forcing mechanisms, albeit it has become challenging to truly understand the details due to their complexity. Most ecosystem models, fortunately, are rooted in a few core biophysical foundations, such as widely recognized Farquhar's model, Ball-Berry-Leuning-Medlyn family models, Penman-Monteith model, Priestley-Taylor Model, Machaelis-Menten kinetics, and others. After an introduction of biophysical essentials, four chapters present the core algorithms and their behaviors in modeling ecosystem production, respiration, evapotranspiration, and global warming potentials"--
How can we understand and rise to the environmental challenges of global change? One clear answer is to understand the science of global change, not solely in terms of the processes that control changes in climate and the composition of the atmosphere, but in how ecosystems and human society interact with these changes. In the last two decades of the twentieth century, a number of such research effortsâ€"supported by computer and satellite technologyâ€"have been launched. Yet many opportunities for integration remain unexploited, and many fundamental questions remain about the earth's capacity to support a growing human population. This volume encourages a renewed commitment to understanding global change and sets a direction for research in the decade ahead. Through case studies the book explores what can be learned from the lessons of the past 20 years and what are the outstanding scientific questions. Highlights include: Research imperatives and strategies for investigators in the areas of atmospheric chemistry, climate, ecosystem studies, and human dimensions of global change. The context of climate change, including lessons to be gleaned from paleoclimatology. Human responses toâ€"and forcing ofâ€"projected global change. This book offers a comprehensive overview of global change research to date and provides a framework for answering urgent questions.
Most environmental studies are based upon data collected at fine spatial scales plots, sediments, cores, etc.. Furthermore, temporal scales of these studies have been relatively short days, weeks, months and few studies have exceeded three years duration the typical funding cycle.; Despite this history, environmental scientists are now being called upon to extrapolate findings from "plot-level" studies to broader spatial scales and from short-term studies to longer temporal scales, up to decades for questions related to long-term processes such as global warming and the rise in sea level.; The complex questions being addressed internationally require that scientists take advantage of new technologies including remote sensing, geographic information systems GIS, and powerful climatic and environmental simulation models. As more environmental scientists begin to work at these broader spatial and temporal scales, and to utilize many of the newer technologies, they are recognising a whole new class of problems.; This book aims to address the most pertinent issues, and includes a comprehensive review of selected topics, case studies, and theoretical discussions, divided into seven sections each preceded by a brief introduction.
In recent years, there has been a marked proliferation in the literature on economic approaches to ecosystem management, which has created a subsequent need for real understanding of the scope and the limits of the economic approaches to ecosystems and
This is the first book of its kind – explicitly considering uncertainty and error analysis as an integral part of scaling. The book draws together a series of important case studies to provide a comprehensive review and synthesis of the most recent concepts, theories and methods in scaling and uncertainty analysis. It includes case studies illustrating how scaling and uncertainty analysis are being conducted in ecology and environmental science.
In 2005, The Millennium Ecosystem Assessment (MA) provided the first global assessment of the world's ecosystems and ecosystem services. It concluded that recent trends in ecosystem change threatened human wellbeing due to declining ecosystem services. This bleak prophecy has galvanized conservation organizations, ecologists, and economists to work toward rigorous valuations of ecosystem services at a spatial scale and with a resolution that can inform public policy. The editors have assembled the world's leading scientists in the fields of conservation, policy analysis, and resource economics to provide the most intensive and best technical analyses of ecosystem services to date. A key idea that guides the science is that the modelling and valuation approaches being developed should use data that are readily available around the world. In addition, the book documents a toolbox of ecosystem service mapping, modeling, and valuation models that both The Nature Conservancy and the World Wide Fund for Nature (WWF) are beginning to apply around the world as they transform conservation from a biodiversity only to a people and ecosystem services agenda. The book addresses land, freshwater, and marine systems at a variety of spatial scales and includes discussion of how to treat both climate change and cultural values when examining tradeoffs among ecosystem services.
Nowadays it is hard to find areas of human activity and development that have not profited from or contributed to remote sensing. Natural, physical and social activities find in remote sensing a common ground for interaction and development. This book intends to show the reader how remote sensing impacts other areas of science, technology, and human activity, by displaying a selected number of high quality contributions dealing with different remote sensing applications.
"The new book Mapping Ecosystem Services provides a comprehensive collection of theories, methods and practical applications of ecosystem services (ES) mapping, for the first time bringing together valuable knowledge and techniques from leading international experts in the field." (www.eurekalert.org).
Mathematical models are being used more and more widely to study complex dynamic systems (global weather, ecological systems, hydrological systems, nuclear reactors etc. including the specific subject of this book, crop-soil systems). The models are important aids in understanding, predicting and managing these systems. Such models are complex and imperfect. One fundamental research direction is to seek a better understanding of how these systems function, and to propose mathematical expressions embodying that understanding. However, this is not sufficient. It is also essential to have tools (often mathematical and statistical methods) to aid in developing, improving and using the models built from those equations. The book is specifically concerned with the application of methods to crop models, but much of the material is also applicable to dynamic system models in other fields. The goal of this book is to fill that gap.* State-of-the-art methods explained simply and illustrated specifically for crop models* Parameter estimation – applying statistical methods to the complex case of crop models, including Bayesian methods * Includes model evaluation, understanding and estimating prediction error* Offers a unique data assimilation by using the Kalman filter and beyond